Dynamique des ressauts de marée et mascarets

en milieu estuarien

Philippe Bonneton

CIERC

EPOC, METHYS team, Bordeaux Univ., CNRS

Introduction

Exemple de ressaut de marée

Bonneton et al. JGR 2015

Introduction

Mascarets de par le monde

Severn River - England

Amazon River – Brazil (Pororoca)

Qiantang River – China

Kampar River – Sumatra (Bono)

un phénomène intense, mais fragile, qui a disparu dans de nombreux estuaires

Phénomène ondulatoire spectaculaire mal connu

- \rightarrow observations in situ qualitatives (visuelles)
 - e.g. Bartsch-Winkler and Lynch 1988, Chanson 2012

Analyse détaillée de la dynamique des ressauts de marée

- \rightarrow campagnes de mesures intensives (Gironde/Garonne et Seine)
- → modélisation numérique (équations de Serre / Green Naghdi)

Introduction

Travaux sur les ressauts de marée

Grande échelle

Transformation de la marée et mécanisme de formation des RM

- Bonneton, P., Filippini, A.G., Arpaia, L., Bonneton, N. and Ricchiuto, M 2016. Conditions for tidal bore formation in convergent alluvial estuaries. *Estuarine, Coastal and Shelf Science.* 172, 121-127
- Filippini, A.G., Arpaia, L., Bonneton, P., and Ricchiuto, M. 2018. Modeling analysis of tidal bore formation in convergent estuaries. *Eur. J. Mech. B Fluids*.

Petite échelle

Dynamique haute fréquence des RM

- Bonneton, N., Bonneton, P., Parisot, J-P., Sottolichio, A. and Detandt G. 2012. Tidal bore and Mascaret example of Garonne and Seine Rivers. *Comptes Rendus Geosciences*, 344, 508-515.
- Bonneton, P., Bonneton, N., Parisot, J-P. and Castelle, B. 2015. Tidal bore dynamics in funnel-shaped estuaries. *J. Geophys. Res.: Ocean*, **120**(2), 923-941.
- Chassagne R., Filippini A., Ricchiuto M. and Bonneton P. 2018. Dispersive-like bores in channels with sloping banks. In preparation

Exposé

□ field measurements

- → Bonneton N., Castelle B., Detandt G., Parisot J-P., Sottolichio A. (EPOC, METHYS team, Bordeaux)
- → Frappart F., Roussel N., Darrozes J. (OMP, Toulouse)
- → Martins K. (Bath University)

Iong wave modeling

→ Ricchuito M., Arpaia L., Filippini A. (INRIA, Bordeaux), Chassagne R. (LEGI)

Plan

- I. Introduction
- II. Ondes de Favre
- III. Observations in situ
- IV. Ressaut de marée de faible cambrure
- V. Conclusion and perspectives

Analogie entre les ressauts de marée ondulants et les ondes de Favre

Ressaut en translation ondulant 2D

Expérience de Treske 1994

Ondes de Favre

Mathematical and physical theories:

Rayleigh 1914, Lemoine 1948, Serre 1954, Benjamin and Lighthill 1954, Johnson 1970, Gurevich and Pitaevskii 1973, El et al. 2006 and many others ...

Laboratory experiments:

Favre 1935, Sandover and Zienkiewics 1957, Bennet & Cunge 1971, Treske 1994, Chanson 1996 & 2009, Soares Frazao and Zech 2002, Simon 2013, Furgerot 2014, David et al. 2014, and many others ...

Numerical simulations:

Peregrine 1966, Wei et al. 1995, Soares Frazao and Zech 2002, Lubin et al. 2010, Pan & Lu 2011, Tissier et al. 2011, Simon 2013, Filippini et al. 2018, and many others ...

Ondes de Favre

Approche de Lemoine

$$C_{\phi} + u_2 = C_b$$

$$C_{\phi} = \left(rac{g}{k} anh(kd_2)
ight)^{1/2}$$

conditions de saut pour le ressaut moyen

$$c_b - u_1 = -\left(\frac{gd_2}{2d_1}(d_2 + d_1)\right)^{\frac{1}{2}}$$

$$c_b - u_2 = -\left(\frac{gd_1}{2d_2}(d_2 + d_1)\right)^{\frac{1}{2}}$$

$$\frac{\lambda}{d_1} = f(F_r)$$

$$F_r = \frac{C_b - u_1}{gd_1}$$

$$rac{\lambda}{d_1}\simeq rac{\sqrt{2}\pi}{\sqrt{3}}(F_r-1)^{-1/2}$$

Ondes de Favre

Approche de Lemoine

$$rac{\lambda}{d_1}\simeq rac{\sqrt{2}\pi}{\sqrt{3}}(F_r-1)^{-1/2}$$

$$rac{A}{\lambda}\simeq rac{4}{3\sqrt{2}\pi}(F_r-1)^{3/2}$$

Ondes de Favre : onde 2D \rightarrow canaux rectangulaires

Ressauts de marée

 \rightarrow influence très grande de la pente des berges

Plan

- I. Introduction
- II. Ondes de Favre
- III. Observations in situ
- IV. Ressaut de marée de faible cambrure
- V. Conclusion and perspectives

Plus de 200 marées observées sur le système estuarien Gironde/Garonne

 \rightarrow très large gamme de marnage et débit fluvial

Mesures complémentaires sur la Seine

Observations in situ

Campagnes de mesure

Podensac field site (Gironde/Garonne)

High-frequency measurements

Pressure sensors (10 Hz)

Acoustic Doppler current profilers (2-8 Hz)

 λ_w , A_w , α_m : mesurés dans l'axe de la rivière

Observations in situ

Structure des ondes secondaires

Structure des ondes secondaires

Bores on trapezoidal channels Treske (1994)

Fig. 11. Undular bore at Froude ~ 1.12.

Fig. 12. Undular bore at Froude ~ 1.24.

Fig. 9. Undular bore at Froude ~ 1.06 .

Fig. 10. Undular bore at Froude ~ 1.10.

<u>F_B>F>F_T</u>

high-steepness regime

2D phase structure $\phi(x,y)$

<u>F_T>F>1</u>

low-steepness regime

1D phase structure $\phi(x)$

Plan

- I. Introduction
- II. Ondes de Favre
- III. Observations in situ
- IV. Ressaut de marée de faible cambrure
- V. Conclusion and perspectives

Chassagne R., Filippini A., Ricchiuto M. and Bonneton P. 2018. Dispersive-like bores in channels with sloping banks. In preparation

analogies avec les ondes de coin (edge waves)?

→ ondes longues (infragravitaires, tsunamis, ...) piégées par réfraction

- o ondes longues décrites par les équations hyperboliques de Saint Venant 2D
- o comportement similaire à des ondes dispersives 1D

position du problème

intégration des équations de SV 2D le long de la section de la rivière

 \rightarrow équation d'onde 1D pour $\overline{\zeta}(\mathbf{x},t)$

 $h(x,y,t)=d(y)+\zeta(x,y,t)$

Equations de Saint Venant linéarisées 2D

$$\frac{\partial \zeta}{\partial t} + d \frac{\partial u}{\partial x} + \frac{\partial dv}{\partial y} = 0$$
$$\frac{\partial u}{\partial t} + g \frac{\partial \zeta}{\partial x} = 0$$
$$\frac{\partial v}{\partial t} + g \frac{\partial \zeta}{\partial y} = 0$$

$$\frac{\partial^2 \zeta}{\partial t^2} - C^2 \Delta \zeta - g \frac{\partial d}{\partial y} \frac{\partial \zeta}{\partial y} = 0,$$

with
$$C = \sqrt{gd}$$
.

position du problème

 $d(y)=d_0-b(y)$ $h(x,y,t)=d(y)+\zeta(x,y,t)$

$$\overline{(\cdot)} = \frac{1}{2L_y} \int_{-L_y}^{L_y} (\cdot) dy$$

$$\frac{\partial^2 \bar{\zeta}}{\partial t^2} - \overline{gd\frac{\partial^2 \zeta}{\partial x^2}} = 0,$$

$$\frac{\partial^2 \bar{\zeta}}{\partial t^2} - C_m^2 \frac{\partial^2 \bar{\zeta}}{\partial x^2} - \overline{g(d-\bar{d})} \frac{\partial^2 \zeta}{\partial x^2} = 0,$$

with
$$C_m = \sqrt{g\bar{d}}$$
.

position du problème

adimensionnement des équations

$$x' = \frac{x}{L_x}, \quad y' = \frac{y}{L_y}, \quad d' = \frac{d}{\overline{d}}, \quad \zeta' = \frac{\zeta}{\overline{A}}$$
$$t' = \frac{t}{L_x/C_m}, \quad u' = \frac{u}{AC_m/\overline{d}}, \quad v' = \frac{v}{AC_m/\overline{d}}$$

$$\frac{\delta \partial \zeta}{\partial t} + \delta d \frac{\partial u}{\partial x} + \frac{\partial d v}{\partial y} = 0$$

$$\frac{\partial u}{\partial t} + \frac{\partial \zeta}{\partial x} = 0$$

$$\frac{\delta \partial v}{\partial t} + \frac{\partial \zeta}{\partial y} = 0$$

$$\frac{\partial^2 \bar{\zeta}}{\partial t^2} - \overline{d \frac{\partial^2 \zeta}{\partial x^2}} = 0$$

$$\delta = \frac{L_y}{L_x} \ll 1$$

$$\zeta = \sum_{i \ge 0} \delta^i \zeta_i$$

Ordre O(1)

$$\frac{\partial^2 \bar{\zeta}_0}{\partial t^2} - \frac{\partial^2 \bar{\zeta}_0}{\partial x^2} = 0$$

<u>Ordre O(δ)</u>

$$\begin{bmatrix} \frac{\partial dv_1}{\partial y} &= -\frac{\partial \zeta_0}{\partial t} - d\frac{\partial u_0}{\partial x} \\ \frac{\partial u_1}{\partial t} + \frac{\partial \zeta_1}{\partial x} &= 0 \\ \frac{\partial \zeta_1}{\partial y} &= 0 \end{bmatrix} \rightarrow \begin{bmatrix} v_1 &= -\frac{y+1}{d}\frac{\partial \overline{\zeta}_0}{\partial t} - \frac{D}{d}\frac{\partial \overline{u}_0}{\partial x} \\ u_1 &= \overline{u}_1 \\ \zeta_1 &= \overline{\zeta}_1 \end{bmatrix}$$

$$D=\int_{-1}^{y}d(s)ds$$

$$\frac{\partial^2 \bar{\zeta}_1}{\partial t^2} - \frac{\partial^2 \bar{\zeta}_1}{\partial x^2} = \mathbf{0}$$

<u>Ordre O(δ^2)</u>

$$K = \int_{-1}^{y} \frac{(y+1-D)}{d} ds$$

<u>Ordre O(δ^2)</u>

$$K = \int_{-1}^{y} \frac{(y+1-D)}{d} ds$$

$$\zeta = \zeta_0 + \delta\zeta_1 + \delta^2\zeta_2 = \bar{\zeta} + \delta^2(K(y) - \bar{K})\frac{\partial^2\bar{\zeta}}{\partial x^2} + O(\delta^3)$$

$$\frac{\partial^2 \bar{\zeta}}{\partial t^2} - \frac{\partial^2 \bar{\zeta}}{\partial x^2} - \delta^2 \chi \frac{\partial^4 \bar{\zeta}}{\partial x^4} = 0$$

$$\chi = d(K(y) - \bar{K})$$

$$\frac{\partial^2 \bar{\zeta}}{\partial t^2} - \frac{\partial^2 \bar{\zeta}}{\partial x^2} - \delta^2 \chi \frac{\partial^4 \bar{\zeta}}{\partial x^4} = 0$$

$$\bar{\zeta} = A \exp(i(kx - \omega t))$$

$$C_{\phi}^2 = \frac{\omega^2}{k^2} = 1 - \delta^2 \chi k^2$$

$$\mathcal{C}_{\phi}=\mathcal{C}_{m}\left(1-\chi k^{2}
ight)^{1/2}$$

$$C_m = \sqrt{g\bar{d}}$$

 $\lambda = 2\pi \chi^{1/2} \left(1 - \frac{(C_b - u_2)^2}{\sigma d_2} \right)^{1/2}$

Approche « à la Lemoine »

Conditions de saut pour le ressaut moyen

25

$$C_b - u_1 = \sqrt{g \frac{A_2}{A_1} \frac{K_2 - K_1}{A_2 - A_1}}$$
$$C_b - u_2 = \sqrt{g \frac{A_1}{A_2} \frac{K_2 - K_1}{A_2 - A_1}}$$

$$\mathcal{K} = \int \mathcal{A} dh$$

Approche « à la Lemoine »

Approche « à la Lemoine »

Conclusion et perspectives

- Identification d'un nouveau régime d'écoulement pour les ressauts de marée ondulants
 - \rightarrow RM à faible cambrure
- Dynamique contrôlée par la réfraction sur les berges
 - \rightarrow équation d'onde 1D de nature dispersive

$$\frac{\partial^2 \bar{\zeta}}{\partial t^2} - \frac{\partial^2 \bar{\zeta}}{\partial x^2} - \delta^2 \chi \frac{\partial^4 \bar{\zeta}}{\partial x^4} = 0$$

Conclusion et perspectives

Simulations numériques Serre-Green Naghdi *Chassagne et al. 2018*

> Quels mécanismes contrôlent la transition à $F=F_{T}$?

Merci de votre attention

