Truc Vert 2008 project

Field measurements of wave celerity in the surf zone, analysis of nonlinear and very low frequency processes

> Tissier M.⁽¹⁾, <u>Bonneton P⁽¹⁾</u>, Almar R.⁽²⁾, Postacchini M.⁽³⁾, Castelle B.⁽¹⁾, Bonneton N.⁽¹⁾, Parisot J-P.⁽¹⁾ and Bretel P.⁽⁴⁾

⁽¹⁾ EPOC, Univ. Bordeaux 1 - ⁽²⁾ PUC, Santiago de Chile - ⁽³⁾ UNIVPM, Ancona, Italy - ⁽⁴⁾ M2C, Caen

Wave celerity is a key parameter for:

- wave propagation models
- remote sensing applications
 - ⇒ estimation of near-shore bathymetry from Radar or Video images

Wave celerity predictors work relatively well before breaking, but not in the surf zone

phase-averaged models and most of the Boussinesq-type models are based on the roller concept

SHORECIRC

Depth inversion from video estimation of c_b

e.g. Stockdon and Holman (2000), Catalan and Haller (2008) or Almar et al. (2008)

Wave celerity in the surf zone

Laboratory experiments :

- monochromatic wave ⇒ Svendsen et al. (1978), Stive (1984), ...
- random waves
 ⇒ Catalan and Haller (2008)

Field experiments :

- Suhayda and Pettigrew (1977) : photographing wave poles
- Thornton and Guza (1982): synchronized pressure sensors

$$(g\bar{h})^{1/2} < c_b < (g\bar{h})^{1/2} \left(1 + \frac{H}{\bar{h}}\right)^{1/2}$$
Linear theory Solitary wave theory

Introduction

Characterization of c_b

Thornton and Guza (1982)

all the harmonics travel at the speed of the wave front

⇒ direct measurements of the broken-wave front celerity c_b

Field experiment

Instrument deployment

Truc Vert beach 2008

Synchronized instruments (f=16 Hz) along a cross-shore line

Cross-shore component of the celerity

$$c_{mx} = \frac{L}{\delta t}$$

$$\theta < 10^{\circ} \Rightarrow C_m \approx C_{mx}$$

error < 2%

time lag $\delta t \Rightarrow$ cross-correlation over 10 min (*Tissier M.*)

 \Rightarrow wave by wave analysis (*Postacchini M.*)

(Almar R.)

Field experiment

Data set

Celerity calculated by cross-correlation between 10-min long signals

the non-dimensionalized broken-wave celerity is mainly controlled by ϵ =H/h

Mean current effects

$$c_m = c_r + U_e$$
 $U_e = \frac{1}{h} \int_{-h}^{0} U(z) dz$ (Kirby and Chen (1989))

- \bullet for most of the data (22 tides over 23) : undertow current with U_e/C _m<2.5%
- for one tide : onshore-directed current with $U_e/C_m \approx 15\%$

Results

Broken-wave celerity predictors

$$\frac{c_{th}}{(g\overline{h})^{1/2}} = f(\varepsilon,\beta)$$

$$\beta = \frac{\zeta_c}{H}$$

Tissier et al. (EJM/B, 2010)

Wave breaking over complex bathymetries induces the generation of circulation cells which are not-stationary \Rightarrow Very Low Frequency (VLF) motions (f<0.04 Hz)

Bruneau et al. (2009)

How these VLF motions can influence wave celerity ?

$$c_m = c_r + U_e$$
 VLF oscillations of the velocity \Rightarrow VLF oscillation of c_m

wave celerity computed on 3-min long periods

—— 3-min averaged cross-shore current (ADV measurements)

This phenomenon can be used as a proxy to analyze, from high frequency wave-celerity video observations, the spatial structure of VLF motions.

Results

VLF motions

Preliminary VLF study from video imagery

Results

VLF motions

Preliminary results

High-energy storm event 11th March 2008

Almar et al. (2010)

Conclusion

□ The influence of non-linearities on wave celerity has been quantified

The classical nonlinear bore model is inappropriate in the vicinity of the swash zone

❑ Nonlinear celerity models have to be improved for video-based depth inversion applications ⇒ ex.: fully nonlinear Boussinesq models (shoaling and surf zones)

Bonneton et al. (EJM/B, 2010) Tissier et al. (ICCE 2010)

Preliminary results show that video imagery can be successful in mapping the spatial variability of VLF motions associated with topographically-controlled rip current systems.

Thank you for your attention

