Tidal modulation of wave-setup and wave-induced currents on the Aboré coral reef, New Caledonia

Philippe BONNETON, Jean-Pierre LEFEBVRE, Patrice BRETEL, Sylvain OUILLON, Pascal DOUILLET

Department of Geology and Oceanography, UMR EPOC, CNRS, University of Bordeaux 1, France Institut de Recherche pour le Développement, UR Camelia, Nouméa, New Caledonia, France

Institut de recherche

18th April 2007

- Nickel : Opencast mining, 30 % of global reserves (3rd global producer)
- Total lagoon area : 23 400 km²
- Nouméa (main city) : 120 000 people
 - Context : urbanism, mining \Rightarrow Focus on the Nouméa lagoon (red box : 2100 km²)

Meteorological stations

Tide recorders

Currentmeter moorings

CTD profiling

Doppler profiling

Wavemeter ★

Ouillon, Douillet, Fichez, Panché, 2005, C R Geoscience, 337 (16), 1509-0517

istory : modeling strategy

South-west layoon of New Caledoni

TISTORY : INVIROUMNAMICS MODELING SOUTH-WEST LAGOON OF NEW CALEGORIA

Douillet, Ouillon, Cordier, 2001, Coral Reefs, 20 (4), 361-372

TISLORY: residence time

South-west lagoon of New Caledonia

Local flushing time (days)

Method : tracer concentration – Case : 8 m/s trade wind + Tide

Jouon, Douillet, Ouillon & Fraunié, 2006, Continental Shelf Research, 26, 1395-1415

What about the reef influence on the lagoon ?

- Input and output fluxes across the barrier reef
- Transformation processes of waves propagating across the reef

Caracterisation of energy transfert across the coral reef Field campaign : oct-nov 2005

- Estimation of the wave setup
- Estimation of the cross reef-wave induced current

Study area

outer rim

Living corals

Study area

0 0.5 Kilometers

reef slope

boulders

rubbles and boulders

reef flat

Reef profile

DGPS Trimble 5700 (vertical accuracy 5 cm)

Instruments deployment

non-directional wave and tide recorder (WTR9 Aanderaa)

high tide level

acoustic Doppler velocimeter (ADV Vector Nortek)

Wave conditions

	October, 18th to 25th (days 0 to 7)	October, 19th to November,2nd (days 8 to 15)
Wind speed (m.s ⁻¹)	5	10
Wind direction	NW	SE
H _s (m)	0.3 to 1.8	0.25 to 0.65
T0 ₂ (s)	5 to 10	4 to 6

- (a) incident significant wave height in a 6.5 m mean water depth
- (b) incident wave period

Caracterisation of energy transfert across the coral reef Field campaign : oct-nov 2005

- Estimation of the wave setup
- Estimation of the cross reef-wave induced current

Reef-top wave setup - Measurements

 $\overline{\zeta}$: 30 minutes averaged elevation mesurements at the reef-top (p1) and offshore (A0)

h_b : depth at the breaking point

 d_r : mean water level over the reef (with no setup)

Reef-top wave setup – Estimation (Symonds et al., 1995)

$$d_r = \overline{\zeta_{A0}} - z_r$$

d_r : mean water level over the reef-top (with no setup)

 ζ_{A0} : 30 minutes averaged elevation measurements offshore (A0)

z_r : reef-top elevation

With the conditions : $\beta x_L / d_r >> 1$ $h_b \equiv Hs_b / \gamma_b$

$$\zeta_r = \alpha (h_b - d_r)$$

 $ζ_r : wave setup at the reef-top$ h_b: water height at the breaking point x_L: reef flat width β : reef slope H₀: incident wave height Hs_b: Hs at the breaking point

$$\gamma_b$$
: constant breaking coefficient = 0.7
(Symonds et al., 1995)

Wave setup on the reef-top, ζ_r , as a function of h_b - d_r from data acquired between day 2 and day 7.

Reef-top wave setup - Results

from $\zeta_r = \alpha (h_b - d_r)$ ζ_r max is reached for $(h_b - d_r)$ max

Caracterisation of energy transfert across the coral reef Field campaign : oct-nov 2005

- Estimation of the wave setup
- Estimation of the cross reef-wave induced current

Cross reef current - Measurements

Thirty minute averaged cross reef currents measured on the reef-top at site adv1 (black line) and in the lagoon at site S4 (blue line)

Cross-reef current – Estimation (Hearn, 1999)

With the condition : $\zeta_r/d_r \ll 1$

$$u_r^2 = K_H d_r (h_b - d_r)$$

- u_r : cross-reef current
- $\mathbf{h}_{\mathrm{b}}\,$: water height at the breaking
- d_r : mean water level over the reef-top
- K_H : Hearn's coefficient
- γ_b : constant breaking coefficient = 0.7

Square of the reef-top current u_r as a function of $d_r(h_b-d_r)$ from data acquired between day 2 and day 7

Cross-reef current – Results

Cross-reef current – Results

• if $d_r min > h_b/2$

u_rmax is reached for d_rmin

Next step (2)

Transformation processes of waves propagating across the reef

Harmonic generation (triads)

« Boussinesq type » approach to model harmonic generation

CONCLUSION

Strong correlation between wave induced setup and tidal level oscillations:

- ζ_r is maximum when d_r is minimum
- when $h_b > 2d_r$: u_r oscillated with a maximum twice a tide, out of phase with d_r
- when $h_b < 2d_r$: u_r oscillated with a maximum at low tide, 180° out of phase with d_r

Further details in the proceedings :

Bonneton, Lefebvre, Bretel, Ouillon & Douillet, 2007, J Coastal Research, in press