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Abstract

In this paper, we revisit the nonlinear shallow water shock-wave model

and its ability to predict wave distortion and energy dissipation of periodic

broken waves in the inner surf zone. We extend the classical presentation

of nonlinear shallow water weak solutions (Stoker (1957)), by taking into ac-

count non-flat bottom and friction effects. From this shock-wave approach,

which is more general than the classical bore model (Svendsen et al. (1978))

generally used in coastal engineering, we derive time-averaged equations. In

particular, from time-averaging of the non-conservative momentum equation,

we obtain a new equation to predict wave setup in the inner surf zone. This

equation gives the setup as a function of the broken-wave energy dissipation.

We also derive a new one-way time-dependent model for predicting the trans-

formation of non-reflective broken waves. This one-way model can represent
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an useful alternative to the classical bore model. Finally, we compare numer-

ical simulations of both, the nonlinear shallow water shock-wave model and

the simplified one-way model, with spilling wave breaking experiments and we

find a good agreement. These results show, in particular, that the kinematics

and the energy dissipation of periodic broken waves in the inner surf zone are

well predicted by weak solutions of the nonlinear shallow water equations.

Keywords: Surf zone; Nonlinear shallow water equations; Saint Venant equations;

Broken-wave; Shock-wave; Weak solution; Energy dissipation ; One-way equation
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1 Introduction

As the waves propagate shoreward to gradually smaller depth, their height and steep-

ness increase, until they break. The dominant types of breakers in natural sandy

beaches are spilling and plunging breakers (Galvin (1968) and Peregrine (1983)). In

spilling breakers, the wave crest becomes unstable and spills down the front part of

the wave, producing a foamy water surface. In plunging breakers, the crest curls

over the shoreward face of the wave and crashes into the base of the wave, causing

a large splash. In both cases, immediately after the initiation of breaking a rapid

change in the wave shape occurs, in a region that has been named the ”transition

region” (Svendsen et al. (1978)). Shoreward of this region the wave field changes

more slowly and reorganizes itself into quasi-periodic bore-like waves. This region,

which extends to the shoreline where the run-up starts, has been termed the ”inner

surf zone” (ISZ). As noticed by Svendsen et al. (1978), one of the remarkable fea-

tures of the ISZ is that the broken waves from a plunging breaker cannot be visually

distinguished from those originating from a spilling breaker. Shoreward of the ISZ,

the swash zone is the area which is intermittently covered and uncovered by wave

run-up. In this paper we consider conditions for which the surf zone has a significant

ISZ, and then beaches of sufficiently gentle uniformly varying slopes.

The classical approach for ISZ-wave modelling is based on the depth-integrated

momentum and energy equations time-averaged over a wave period (e.g. Hamm et

al. (1993) for a review). Wave height and setup variations are computed from in-

tegral wave properties, such as the energy flux, the radiation stress, and the energy

dissipation. These models are relatively simple and useful for practical applications
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except in the swash zone. However, in some applications, e.g. sediment transport

modelling, the prediction of time-varying quantities, such as the ISZ oscillating ve-

locities or swash oscillations, is required. In this paper, we revisit the time-dependent

nonlinear shallow water (NSW) shock-wave model and its ability to predict periodic

broken-wave transformation in the ISZ.

The NSW shock-wave approach, extensively used in hydraulics problems (Stoker

(1957) and Whitham (1974)), has been successfully applied for studying single bore

propagation on a beach. For instance, one-way analytical solutions of this phe-

nomenon were first given by Whitham (1958) and Ho and Meyer (1962), and nu-

merical simulations were performed by Keller et al. (1960) and Hibberd and Pere-

grine (1979). On the other hand, only few theoretical NSW-based studies have been

devoted to the dynamics of periodic (or quasi-periodic) broken waves propagating

in the ISZ.

Kobayashi and his colleagues (Kobayashi et al. (1987, 1989, 1990 and 1996))

developed a shock-capturing numerical NSW model, and showed that it gives good

results in comparison with laboratory measurements of periodic ISZ broken waves.

Using a similar modelling approach, Raubenheimer et al. (1996) and Bonneton et al.

(2000 and 2005) found a good agreement between computed ISZ wave solutions and

field observations on gently sloping beaches. However, in spite of these promising

results, the validity of the NSW equations for describing wave distortion and energy

dissipation in the ISZ, is frequently challenged. For instance, Liu et al. (1991)

wrote the following comment: ”Interestingly, even though many assumptions of the

shallow-water wave theory are violated in the surf zone, certain quantitative and

4



qualitative comparisons of its predictions with the experimental or field data often

produce good agreement: this is puzzling”. The main objectives of this paper are to

shed some light on this problem and to evaluate to what extent the NSW shock-wave

approach describes adequately the time-dependent ISZ broken-wave transformation.

We will also discuss the ability of this shock-wave model, which corresponds to a

more general approach than the classical bore model (Svendsen et al. (1978), to

give a theoretical framework to evaluate time-averaged quantities such as energy

dissipation and wave setup.

The paper is outlined as follows. A detailed analysis of the validity of NSW

hypotheses in the ISZ is given in section 2. In sections 3, we derive NSW shock-

wave solutions, extending the classical presentation (Stoker (1957)) by taking into

account non-flat bottom and friction effects. From this shock-wave approach we

derive time-averaged equations for periodic broken waves propagating in the ISZ.

Using the shock-wave theory, we derive in section 4 a new one-way model to predict

the transformation of non-reflective periodic broken waves. Finally in section 5,

validity of both NSW and one-way shock-wave solutions is assessed from comparisons

with laboratory ISZ experiments.
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2 Validity of NSW hypotheses in the inner surf

zone

In this section, after a brief introduction of the NSW shock-wave model, we will

analyze the validity of the NSW approximations for describing periodic-wave trans-

formation in the ISZ.

2.1 NSW equations and shock-wave concept

We consider two-dimensional broken-wave propagation in the vertical plane (x, z),

where x is the horizontal coordinate and z the vertical coordinate taken to be positive

upward, with z = 0 at the still water level. In the ISZ, the broken-wave wavelength

is very large compared to both the water depth and the wave front width. To reduce

the dimension and number of unknowns of this shallow water problem, a vertical

integration of the Navier Stokes equations can be performed over the instantaneous

water depth h(x, t). Using the kinematic and dynamic boundary conditions at both

the bottom, z = −d(x), and the free surface, z = ζ(x, t), we can obtain the following

depth-integrated equations (e.g. Dingemans (1997))

∂h

∂t
+

∂hu

∂x
= 0 (1)

ρ
∂hu

∂t
+ ρ

∂

∂x

(
hu2 +

1

2
gh2

)
− ρgh

∂d

∂x
= −τ b +

∂T ν

∂x
+

∂V

∂x
+N , (2)

where u = 1
h

∫ ζ

−d
v1 dz is the depth-averaged horizontal velocity, v1 the horizontal

velocity component, g the gravitational acceleration, ρ the fluid density, τ b the

bottom-shear stress, and

T ν = 2ρν

∫ ζ

−d

∂v1
∂x

dz ,
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V =

∫ ζ

−d

−ρũ2 dz , with ũ = v1 − u ,

N =
∂

∂x

(∫ ζ

−d

−p dz

)
+ p(−d)

∂d

∂x

where ν is the kinematic viscosity, p the dynamic pressure defined by p(x, z, t) =

P (x, z, t) − ρg(ζ(x, t)− z) and P the pressure. T ν is the integrated viscous stress,

V the excess momentum flux due to both turbulence and vertical non-uniformity of

the velocity profile, and N characterizes non-hydrostatic effects.

It is important at this point to emphasize that the only approximations that

have been made in the derivation of these equations are related to the air-water

interface hypotheses: air entrainment and surface tension can be neglected and ζ is

a single-valued function of x.

Depth-integrated equations (1) and (2) cannot be evaluated any further unless

theoretical or empirical closure relations are introduced for terms on the right-hand

side of the horizontal momentum equation (2). By neglecting the three last terms

and using a standard bottom friction parameterization quadratic in u we obtain the

NSW equations with friction (also named Saint Venant equations)

∂h

∂t
+

∂hu

∂x
= 0 (3)

ρ
∂hu

∂t
+ ρ

∂

∂x

(
hu2 +

1

2
gh2

)
− ρgh

∂d

∂x
= −1

2
ρfr|u|u , (4)

where the friction coefficient fr is about 10−2 in the ISZ.

The classical demonstration of the NSW equations (e.g. Stoker (1957)) as-

sumes that vorticity and vertical acceleration are negligibly small, and that any

variations of surface level ζ or of depth-averaged velocity u have a length-scale λ0

many times the characteristic water depth d0. Despite these strong assumptions,
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comparisons with both large-scale laboratory data and field data have demonstrated

a remarkable capability of the NSW equations to predict the complex dynamics of

long waves in the nearshore (e.g. Liu et al. (1991)). The most surprising feature is

the ability of these equations to describe broken-wave propagation in the ISZ (e.g.

Kobayashi et al. (1989), Raubenheimer et al. (1996) or Bonneton et al. (2005)),

despite intense vorticity and vertical acceleration observed in such flows.

In fact, vorticity and vertical acceleration are strongly localized, and we can

schematically distinguish two regions in ISZ broken waves (see figure 1a): a thin

”wave front” (WF) where the flow variables change rapidly, and a ”regular wave

region” (RWR).

In the upper part of WF, the turbulent region of recirculating water carried

with the wave is called the ”roller” region. WF are characterized by non-hydrostatic

pressure deviations and strongly vertically non-uniform velocity distributions (see

Govender et al. (2002)). Laboratory experiments performed by Nadaoka et al.

(1989) and Ting and Kirby (1996) have shown that turbulence and energy dissipation

are mainly located in WF.

Conversely, in RWR, as shown by Ting and Kirby (1996) and Lin and Liu

(1998), horizontal velocity is nearly vertically uniform, pressure distribution is al-

most hydrostatic, vorticity and turbulence intensities are weak.

The underlying hypotheses for the NSW equations seem, therefore, to be sat-

isfied for RWR and not for the thin WF. Moreover, it is well known (Stoker (1957))

that in most cases the NSW equations, with or without friction, result in disconti-

nuous solutions (shocks), which can be considered as the mathematical counterparts
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of WF. In this paper we will consider that the ISZ-wave solution can be approx-

imated by introducing discontinuities (see figure 1b) satisfying appropriate shock

conditions (see section 3) and retaining the NSW equations in continuous parts of

the flow (RWR).

2.2 Scaling analysis

To examine the approximations involved in the NSW equations we present a scaling

analysis of depth-integrated equations (1) and (2). We consider periodic broken

waves propagating in the ISZ and we restrict our analysis to RWR.

The scales of the variables are suggested by the long wave theory. The length

scales that characterize wave motion are λ0, a0 (H0 = 2a0 is the characteristic wave

height), and d0, which are the typical values of wavelength, free-surface amplitude

and water depth. The time scale is λ0/c0, where c0 = (gd0)
1/2. The characteristic

scales for velocity and dynamic pressure are given respectively by U = a0c0/d0 and

P = ρga0d
2
0/λ

2
0. Characteristic scales for the integrated viscous stress term may be

estimated as ρνUd0/λ0.

To distinguish the turbulent contribution from the contribution of the vertical

non-uniformity of the wave velocity we introduce the operator 〈.〉 which is an ensem-

ble average. The horizontal x-component of the velocity field v1 can be decomposed

into two parts: the ensemble-averaged velocity 〈v1〉, which is the organized wave-

induced velocity including both undertow and orbital wave motion, and turbulent

velocity fluctuations v′1 = v1 − 〈v1〉. Using the decomposition ũ = (〈v1〉 − u) + v′1

and neglecting interaction between 〈v1〉 − u and v′1, V can be expressed as:

V = V t + Ṽ
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where V t =
∫ ζ

−d
−ρv′21 dz is the excess momentum flux due to turbulence and

Ṽ =
∫ ζ

−d
−ρ(〈v1〉 − u)2 dz the excess momentum flux due to vertical non-uniformity

of the velocity profile. The characteristic scales for V t and Ṽ are given respectively

by V t and Ṽ.

Let us normalize all variables according to the scales anticipated on physical

grounds:

xa =
x

λ0
ζa =

ζ

a0
ta =

t

λ0/c0
za =

z

d0

da =
d

d0
pa =

p

P ua =
u

U T ν
a =

T ν

ρνUd0/λ0

Na =
N

Pd0/λ0
V t
a =

V t

V t
Ṽa =

Ṽ

Ṽ

With these assumptions, the nondimensional equations may be written as:

∂ζa
∂ta

+
∂

∂xa
((εζa + da)ua) = 0 (5)

∂

∂ta
((εζa + da)ua) + ε

∂

∂xa

(
(εζa + da)u

2
a

)
+ (εζa + da)

∂ζa
∂xa

= −1

2
fr

ε

μ1/2
|ua|ua

+
1

Re

∂T ν
a

∂xa
+K1

∂V t
a

∂xa
+K2

∂Ṽa

∂xa
+ μNa (6)

with five characteristic dimensionless parameters:

ε =
a0
d0

=
1

2

H0

d0
μ =

d20
λ2
0

Re =
λ0c0
ν

K1 =
V t

ρgd0a0
K2 =

Ṽ
ρgd0a0

The dimensionless number ε characterizes the non-linearity of the wave field.

Laboratory observations of monochromatic waves on planar beaches (e.g. Bowen et

al. (1968) or Svendsen et al. (1978)) and field measurements (e.g. Thornton and

Guza (1982), Raubenheimer et al. (1996) or Sénéchal et al. (2001)) suggest that
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the heights H of broken waves in the ISZ are depth limited: H = γh̄ (where h̄ is the

time-average water depth), with γ weakly depending on μ, the beach slope β and

the offshore wave steepness. The observed values of γ are about 0.6. From these

observations we can estimate that in the ISZ the order of magnitude of ε = 1
2
H0

d0
�

γ/2 is about 0.3, which indicates that RWR dynamics is a moderately nonlinear

process.

The non-dimensional parameter μ = d20/λ
2
0 characterizes non-hydrostatic and

frequency dispersion effects. In the ISZ, μ is generally much smaller than 10−2. Lin

and Liu (1998), using a numerical model based on the Reynolds equations, showed

that the pressure distribution under the spilling breaking wave is almost hydrostatic

in RWR, with a maximum deviation from hydrostatic pressure of only 7%, which

occurs in WF.

The dimensionless parameter fr
ε

μ1/2 is generally much smaller than 1 in the ISZ,

but its value increases shoreward and becomes of order 1 in the swash zone. Thus,

the friction term must be retain in equation (6) due to its significant contribution

in the swash zone.

In water waves of reasonable scale, the Reynolds number Re is much greater

than 1 and the integrated viscous stress term can be neglected.

The dimensionless parameter K1 characterizes the relative importance of the

excess horizontal momentum flux due to turbulence compared to the depth aver-

aged horizontal momentum flux. Several laboratory experiments on regular spilling

breakers (e.g. Svendsen (1987) or Ting and Kirby (1996)) showed that the variation

of turbulence intensity 〈v′21 〉1/2 over the depth is very small in RWR and that 〈v′21 〉1/2
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varies nearly proportionally to (gh̄)1/2 : 〈v′21 〉1/2 = α1(gh̄)
1/2, with α1 ∼ 5. 10−2.

George et al. (1994) observed the same turbulent characteristics in natural surf zone,

excepted that they found a smaller coefficient than in existing laboratory studies :

α1 ∼ 10−2. From these observations we can estimate that |V t| � ρ〈v′21 〉h � ρα2
1gh̄h,

which gives a characteristic scale V t = ρα2
1gd

2
0. Then, the dimensionless number

K1 = α2
1/ε ranges from about 10−3 to 10−2. Consequently, in RWR the contribution

of the depth integrated turbulent flux is small in equation (6).

The dimensionless parameter K2 characterizes the relative importance of the

excess horizontal momentum flux due to vertical non-uniformity of the velocity pro-

file compared to the depth averaged horizontal momentum flux. Experiments by Cox

(1995) and Ting and Kirby (1996) have shown that in RWR the ensemble-averaged

horizontal velocity 〈v1〉 is nearly vertically uniform. This property is illustrated in

figure 2 from velocity data measured in the ISZ by Cox (1995). These experiments

were conducted in a wave flume with a beach slope of 1 : 35. The wave period T

was 2.2 s and the wave height was selected to generate spilling breakers. Figure

2a shows the temporal variation of the nondimensional phase-averaged free surface

elevation 〈ζ〉/a0 and figure 2b vertical variations of nondimensional phase-averaged

horizontal velocity 〈v1〉/U . We observe a strong vertical variation of 〈v1〉/U in the

WF (figure 2b, ta = 2/6), but a nearly vertically uniform horizontal velocity field in

RWR. From Cox’s data set corresponding to four different x locations in the ISZ,

we have estimated that in RWR K2 is about 10−3. Consequently, inside RWR the

contribution of the excess horizontal momentum flux due to vertical non-uniformity

of the velocity profile is small in equation (6).
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From this scaling analysis we have shown that in RWR the contributions of

∂
∂x

(T ν), ∂
∂x

(V ) and N are small in equation (2). This explains why a model based

on both, NSW equations (equations (3) and (4)) for regular or continuous parts of

the wave field (RWR) and discontinuities satisfying appropriate shock conditions for

thin wave fronts (WF), represents an appropriate tool for predicting periodic-wave

transformation in the ISZ.

13



3 Periodic weak solutions to the NSW equations

In the first part of this section, we briefly recall the derivation of the NSW shock-

wave solution (or weak NSW solution). The classical presentation (e.g. Stoker (1957)

and Johnson (1997)) is extended by taking into account non-flat bottom and friction

effects. In a second part, the shock-wave approach is applied to derive time-averaged

equations for periodic broken waves. In particular, we proposed a new equation

which gives the wave setup as a function of the broken-wave energy dissipation. In

this section, we show that the NSW shock-wave model is a less restrictive approach

than the classical bore model (see appendix A) which is generally used in coastal

engineering.

3.1 Shock conditions and local dissipation

Our model associates the NSW equations with friction for the regular part of the

wave field, and discontinuities for wave fronts. Resulting discontinuous solutions

clearly do not satisfy the partial differential equations (equations (3) and (4)) in

the classical sense, since the derivatives are not defined at discontinuities. We can,

however, interpret the derivatives in the sense of distributions, using the mathemat-

ical concept of weak solutions (e.g. Whitham (1974) and Serre (1996)). To impose

uniqueness of the solution it is necessary to derive other conditions to pick out

the physically correct solution. These conditions are called mathematical entropy

conditions by analogy with gas dynamics.

We return to the integral forms of the mass and momentum conservation laws,

which still apply to discontinuous solutions. Let us consider a region made up of
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water lying between two vertical planes x = xa(t) and x = xb(t), such that, these

planes contain always the same fluid particles. This assumption can be justified by

the fact that in our study the vertical variability of the velocity field can be neglected

(K2 � 1). We suppose that there is a discontinuity at x = xs(t), between x = xa(t)

and x = xb(t). The laws of conservation of mass and momentum are applied to the

fluid domain [xa, xb]:

d

dt

(∫ xb(t)

xa(t)

ρh dx

)
= 0 (7)

d

dt

(∫ xb(t)

xa(t)

ρhu dx

)
= Fo (8)

where Fo = −1
2
ρg(h2(xb)−h2(xa))+

∫ xb

xa
ρgh ∂d

∂x
dx−∫ xb

xa
τ b dx is the x-component of

the sum of body and surface forces acting on the fluid domain. These conservation

equations can be written∫ xs

xa

(
∂h

∂t
+

∂hu

∂x
) dx+

∫ xb

xs

(
∂h

∂t
+

∂hu

∂x
) dx+ [hu]− cb[h] = 0 (9)

∫ xs

xa

(
∂hu

∂t
+

∂hu2

∂x
) dx +

∫ xb

xs

(
∂hu

∂t
+

∂hu2

∂x
) dx+ [hu2]− cb[hu] =

−
∫ xs

xa

∂

∂x
(
1

2
ρgh2) dx−

∫ xb

xs

∂

∂x
(
1

2
ρgh2) dx− [

1

2
ρgh2]

+

∫ xb

xa

ρgh
∂d

∂x
dx−

∫ xb

xa

τ b dx (10)

where the brackets [ ] indicate a jump in the quantity and cb is the shock velocity

defined by cb =
dxs

dt
.

The shock conditions are obtained by considering the limit case in which the

length of the domain tends to zero, in such a way, that the discontinuity remains

inside the domain. When we do so, we obtain the following shock conditions

−cb[h] + [hu] = 0 (11)
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−cb[hu] + [hu2 +
1

2
gh2] = 0 . (12)

A conventional notation is to use subscript 1 and 2 for values ahead and behind the

shock respectively (see figure 1b). So the shock conditions may also be written in

the form

u1 − cb = εs

(gh2

2h1
(h2 + h1)

) 1
2

(εs = ±1) (13)

u2 − cb = εs

(gh1

2h2
(h2 + h1)

) 1
2

(14)

Two solutions are possible, depending on the sign of εs, but only one physical solution

makes sense. The non-uniqueness of solutions is due to the fact that some physical

processes, such as turbulence, have been neglected in the WF. To derive the correct

solution we need an entropy condition. In our problem, the entropy condition is

based on the fact that the law of energy conservation is not verified across a shock,

because the particle crossing the shock must lose energy.

The energy conservation principle states that

dE

dt
= W (15)

where E =
∫ xb

xa
E dx is the total energy, E = 1

2
ρ(hu2+g(ζ2−d2)) is the energy density

of a column of fluid, and W is the work due to surface stresses at the boundaries of

the fluid domain, W = −ρg
2
(u(xb)h

2(xb)− u(xa)h
2(xa))−

∫ xb

xa
uτ b dx. Let us define

the rate of energy dissipation Db due to the presence of shock by

Db = −dE

dt
+W

This expression can be written

Db = −
∫ xs

xa

(
∂E
∂t

+
∂F
∂x

) dx−
∫ xb

xs

(
∂E
∂t

+
∂F
∂x

) dx− [F ] + cb[E ]−Df (16)
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where F = ρhu (1
2
u2 + gζ) is the energy flux density and Df =

∫ xb

xa

1
2
ρfr|u|u2 dx is

the energy dissipation due to bottom friction.

In continuous parts of the flow, using the mass and momentum conservation

equations (3) and (4) we obtain

∂E
∂t

+
∂F
∂x

= −1

2
ρfr|u|u2 , (17)

hence,

Db = 0.

The law of energy conservation is verified and energy dissipation is only due to

bottom friction.

If a shock occurs at x = xs(t), equation (16) yields the relation

Db = −[F ] + cb[E ] (18)

which can be written using the shock conditions (13) and (14)

Db = −εs
ρg

4

(g(h2 + h1)

2h1h2

) 1
2

(h2 − h1)
3 .

We see, therefore, that the law of energy conservation (equation (15)) does not hold

across a shock. If we postulate that the particles crossing the shock must lose energy

due to turbulent processes that we have neglected, then

Db = −[F ] + cb[E ] > 0 (19)

and consequently

εs = −1.

Inequality (19) is employed to weed out physically inadmissible weak solutions. The

energy density E is the mathematical entropy of the NSW equations.
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The entropy weak solution is then characterized by the shock conditions

u1 − cb = −
(gh2

2h1
(h2 + h1)

) 1
2

(20)

u2 − cb = −
(gh1

2h2
(h2 + h1)

) 1
2

(21)

and the shock dissipation, or the ”broken-wave dissipation”,

Db =
ρg

4

(g(h2 + h1)

2h1h2

) 1
2

(h2 − h1)
3 (22)

or, equivalently

Db =
ρg

4

|Qb|
h1h2

(h2 − h1)
3 (23)

where Qb = h1(u1 − cb) = h2(u2 − cb) is the volume flux across the shock in the

coordinate system moving with the broken-wave celerity cb.

As we could expect, these equations coincide with the classical shock condi-

tions (see Stoker (1957)) obtained without friction and bottom slope effects. Math-

ematically, the composite solution, composed of continuously differentiable parts

satisfying equations (3) and (4), together with jump conditions (20) (21) as well as

inequality (19), can be considered a weak entropy solution of equations (3) and (4).

Expression (22) is often used in the coastal-engineering literature, but generally

it is introduced from an analogy between a ISZ broken-wave and an hydraulic jump

(e.g. Le Méhauté (1962) or Battjes and Janssen (1978)). However, the hydraulic

jump is a special case of shock wave where the energy dissipation remains constant

over time. It is worthwhile to note that the broken-wave dissipation given by equa-

tion (22) can be applied to any shallow-water broken wave, even to non-saturated

breakers (see figure 1), and not only to hydraulic jumps.
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3.2 Time-averaged energy dissipation and wave setup

Prediction of time-averaged quantities such as mean broken-wave energy dissipation

or wave setup represents an important issue of wave modelling in the surf zone.

These quantities are generally evaluated from mean equations obtained by using a

time average over the wave period of mass, momentum and energy equations (e.g.

Phillips (1977)). In the framework of NSW weak solutions, contribution of shock

wave has to be carefully estimated when time average of non-conservative equations,

such as the energy equation, is performed.

In nearshore applications, the time-averaged energy equation for periodic bro-

ken waves is generally introduced in the context of the classical bore model (see

Svendsen et al. (1978) and Appendix A). In this section, we derive the time-averaged

energy equation in a more general context based on the NSW shock-wave solution.

We consider periodic broken waves of period T and the time average operator is

defined as (.) = 1
T

∫ t+T

t
(.) dτ . To derive the mean energy equation we develop the

expression of the mean energy flux gradient ∂F̄
∂x

T
∂F̄
∂x

=
∂

∂x

(∫ t+T

t

F dτ

)
=

∂

∂x

(∫ t−s

t

F dτ

)
+

∂

∂x

(∫ t+T

t+s

F dτ

)

=

∫ t−s

t

∂F
∂x

dτ +
dts
dx

F(t−s ) +
∫ t+T

t+s

∂F
∂x

dτ − dts
dx

F(t+s ) .

where ts(x) is the time at which the shock is located in x. Using equation (17) we

obtain

T
∂F̄
∂x

= −
∫ t−s

t

∂E
∂t

dτ −
∫ t+T

t+s

∂E
∂t

dτ −
∫ t+T

t

1

2
ρfr|u|u2 dτ +

1

cb
[F ]

=
1

cb
([F ]− cb[E ])−

∫ t+T

t

1

2
ρfr|u|u2 dτ
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and finally

∂F̄
∂x

= −Dbm −Dfm , (24)

where Dbm = Db/(cbT ) is the mean broken-wave dissipation and Dfm = 1
2
ρfr|u|u2

is the mean bottom friction dissipation. Using equations (22) and (23), Dbm writes

Dbm =
ρg

4cbT

(g(h2 + h1)

2h1h2

) 1
2
(h2 − h1)

3 (25)

or, equivalently

Dbm =
ρg

4cbT

|Qb|
h1h2

(h2 − h1)
3 . (26)

In case of saturated breakers (h2 − h1 = H), the dissipation expression (25)

reduces to the classical bore model (equation (43) in appendix A) when the broken-

wave celerity cb is estimated using a quasi-constant wave-form assumption (equation

(42) in appendix A). We will show in section 5 that this assumption leads to a cb-

model which underestimates the actual broken-wave celerity.

It is worthwhile to note that the mean energy dissipation equations (25) and

(26) have been established in a less restrictive context than those of the classical bore

model (see appendix A). In particular, we do not need to assume a quasi-constant

wave form and we can also consider non-saturated breakers (h2 − h1 < H).

Now a new time-averaged equation to determine the wave setup ζ̄ is derived

from the non-conservative momentum equation

∂u

∂t
+

∂

∂x

(
1

2
u2 + gζ

)
= −1

2

fr|u|u
h

. (27)

To derive the setup equation we develop the expression of the gradient ∂M̄
∂x

, where

M = 1
2
u2 + gζ ,

T
∂M̄
∂x

=
∂

∂x

(∫ t−s

t

M dτ

)
+

∂

∂x

(∫ t+T

t+s

M dτ

)
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=

∫ t−s

t

∂M
∂x

dτ +
dts
dx

M(t−s ) +
∫ t+T

t+s

∂M
∂x

dτ − dts
dx

M(t+s )

Using equation (27) we obtain

T
∂M̄
∂x

= −
∫ t−s

t

∂u

∂t
dτ −

∫ t+T

t+s

∂u

∂t
dτ −

∫ t+T

t

1

2

fr|u|u
h

dτ +
1

cb
[M]

=
1

cb
([M]− cb[u])−

∫ t+T

t

1

2

fr|u|u
h

dτ

The expression [M]− cb[u] is computed using shock conditions (20) and (21)

[M]− cb[u] =
g

4

(h2 − h1)
3

h2h1

=
Db

ρ|Qb| .

From this expression we find

∂M̄
∂x

=
Dbm

ρ|Qb| −
1

2
fr|u|u/h

and finally

∂ζ̄

∂x
=

Dbm

ρg|Qb| −
1

g

∂

∂x

(
1

2
u2

)
− 1

2g
fr|u|u/h . (28)

In this equation the friction term can be generally neglected. The main contribution

for wave setup is due to the first term on the right-hand side of equation (28), Dbm

ρg|Qb| ,

which is related to the broken-wave energy dissipation. This term can also be written

Dbm

ρg|Qb| =
1

4cbT

(h2 − h1)
3

h1h2
.

To our knowledge, it is the first study which explicitely shows, from a non-linear

theory, that broken-wave energy dissipation Dbm acts as a wave driving term in the

mean momentum equation. However, previous studies (Longuet-Higgins (1973) and

Dingemans at al. (1987)) based on the linear wave theory already showed that the

wave driving force in the mean momentum equation can be written in function of
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Dbm. We will show in section 5 that equation (28) can represent an alternative to

classical time-averaged methods (e.g. Longuet-Higgins and Stewart (1964) and Mei

(1989)) for computing wave setup in the surf zone.

22



4 A one-way broken-wave model

The motion of a single bore propagating into water at rest on a beach has been

studied for a long time. One-way analytical solutions of this phenomenon were first

given by Whitham (1958) and Ho and Meyer (1962), and numerical simulations were

performed by Keller et al. (1960) and Hibberd and Peregrine (1979). On the other

hand, only few studies have been devoted to the propagation of periodic broken

waves on a gently sloping beach. This is mainly due to the fact that shock-wave

conditions are more complex for periodic broken waves (velocity ahead the wave

front, u1, is negative), than for a single bore which propagates into quiescent water

(u1 = 0).

In this section, we present a simplified one-way version of the NSW shock-wave

model, which applies to the transformation of non-reflective periodic broken waves on

gently sloping beaches. Even if numerical solutions of the complete NSW model can

be now easily computed, a simplified one-way approach is useful to provide breaking-

wave parameterizations in both, time-averaged wave models (e.g. Svendsen et al.

(2003)) and time-dependent Boussinesq-type models (e.g. Madsen et al. (1997)).

In particular, the estimation of the broken-wave celerity from a one-way approach

is a key point of these parameterizations (Bonneton (2004)).

We first consider the case of wave propagation on a horizontal bottom. Such a

situation represents an interesting limiting case of wave propagation on a gently slop-

ing beach, even if in this case dispersive mechanisms actually play a significant role.

If the still water depth is constant, d = d0, and the friction term is discarded, the

hyperbolic system of equations (3) and (4) may be expressed by two characteristic
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equations, { ∂

∂t
+ (u± c)

∂

∂x

}
(u± 2c) = 0 (29)

where c(h) = (gh)
1
2 . The Riemann invariants α± = u ± 2c are constant along

characteristic curves C± defined by dx
dt

= u± c.

The weak solution theory becomes particularly simple in the case of problems

in which the wave field has one of the Riemann invariants constant throughout. A

wave solution corresponding to such a situation is called a ”simple wave” (see Stoker

(1957)). For instance, if a wave is propagating in the positive x-direction into water

of constant depth d0 and constant velocity u0 , α− is constant and given by

α− = u− 2c = u0 − 2c0 (30)

with c0 = (gd0)
1
2 . Consequently, the two NSW equations reduce to a one-way

equation which is either, the mass conservation equation

∂h

∂t
+

∂q(h)

∂x
= 0 (31)

or the momentum conservation equation

∂q(h)

∂t
+

∂

∂x

(
q(h)2/h+ 0.5gh2

)
= 0 (32)

where q(h) = hu = h(u0 − 2c0 + 2c(h)). These two equations are equivalent pro-

vided that the wave solution is continuous. However, when a shock is involved, this

equivalency no longer hold, because there is a jump in α− quantity at the shock.

This jump, [α−], can be obtained by subtracting equation (21) from equation (20).

We find

[α−] = −2 (g(h1 + h2)/2)
1
2

(
ε

(1− ε2)1/2
− (1 + ε)1/2 + (1− ε)1/2

)
(33)
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where ε = (h2 − h1)/(h2 + h1) is the shock strength. Bonneton (2001) has shown

that for shocks of moderate strength, such as ISZ-shocks where ε ∼ γ/2 ∼ 0.3 (see

section 2), neglecting changes in the Riemann invariant α− constitutes a reasonable

approximation, and so equation 30 can be applied even at a shock.

This approximation allows the one-way equation (31) to be retained and com-

bined with the shock condition, −cbs [h] + [q(h)] = 0 , which yields the relation

cbs = u0 − 2c0 + 2g
1
2
h
3/2
2 − h

3/2
1

h2 − h1

, (34)

where cbs is the one-way shock-wave celerity. The energy dissipation Dbs is given by

Dbs = −[F ] + cbs[E ] , which leads to

Dbs =
ρ

g
(c2 − c1)

3

(
c22 + 3c1c2 + c21 + (u0 − 2c0)

(c22 + 4c1c2 + c21)

2(c2 + c1)

)
, (35)

with c1 = c(h1) and c2 = c(h2). Celerity cbs and dissipation Dbs are approximations

of the exact shock celerity cb and dissipation Db. Figure 3 presents the relative errors

(cb − cbs)/cbs and (Db −Dbs)/Dbs in function of the shock strength ε, assuming that

(h2+h1)/2
d0

∼ 1 and u0 = 0. This figure shows that, even if cbs and Dbs are smaller

than cb and Db, they represent good approximations when the shock is either weak,

or of moderate strength, as in the case of ISZ broken waves.

Figure 4 presents the time evolution of the energy dissipation Dbs of an initial

sine wave propagating on a flat bottom. Energy dissipation starts when the shock

forms at t = ts, increases up to t � 1.6ts and progressively decreases. This evolution,

which is due to continuous broken-wave distortion, is definitely different from those

of a hydraulic jump. Indeed, the hydraulic jump reaches immediately its full strength

and the energy dissipation remains constant over time.
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Let us consider now in more detail the energy dissipation mechanisms involved

in the weak-solution theory. One useful technique for determining weak solutions of

the one-way equation (31) is to apply the method of characteristics and then elim-

inate the multi-valued parts by inserting shocks. To find the appropriate location

of the shock, Whitham (1974) proposed an ingenious method called ”the equal area

rule”. The shock is located so that the regions cut off on either side have equal

areas, as in figure 5. This is a consequence of mass conservation: the integral of the

discontinuous weak solution must be the same as the area under the multi-valued

solution, since both are subject to the same conservation law. It is important to

emphasize again that the energy of the weak solution is not conserved in the pres-

ence of shocks. Figure 5 clearly shows that the mass redistribution at the shock

induces a decrease of the potential energy, in accordance with the actual physical

wave breaking process. Then, the equal area rule gives us a better understand-

ing of the energy dissipation mechanisms involved in the weak-solution theory. If

the present discussion of dissipation processes remains qualitative, we will show in

section 5 that there is also a good quantitative agreement between theoretical and

measured broken-wave energy dissipation.

Let us consider now a more realistic case where periodic broken waves prop-

agate over a sloping beach. In that case, the onshore mass transport associated

with waves propagating towards the shore is balanced by an offshore mean flow ū.

Moreover, as described in section 3.2, broken-wave dissipation induced a wave setup

ζ̄. So, the periodic broken waves propagate into a water depth h̄ with a mean cur-

rent ū. We can consider that for a gently sloping beach wave reflexion is negligible.
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Indeed, Peregrine (1967) theoretically showed that for periodic non-broken waves on

a gently sloping beach, wave reflexion is very small. Moreover, in the ISZ the wave

energy decreases shoreward due to wave breaking and then wave reflexion at the

shoreline is very small. So, for a gently sloping beach we can estimate that locally

α− is constant and can be evaluated using equation (30), α− = u − 2c � ū − 2cm,

with cm = (gh̄)
1
2 . Considering that u− 2c is a slow-varying function of x, which is

not dependent on time, we obtain the following relation:

u− 2c = ū− 2c̄ . (36)

With this relation, the NSW equations can be reduced to a one-way equation:

∂h

∂t
+

∂

∂x

{
h
(
ū− 2c̄+ 2(gh)1/2

)}
= 0 (37)

with the shock condition, −cbs [h] + [q(h)] = 0 , which yields the relation

cbs = ū− 2c̄+ 2g
1
2
h
3/2
2 − h

3/2
1

h2 − h1
. (38)

We will show in the next section, that this one-way model gives good results

for describing the non-linear transformation of periodic broken waves in the ISZ.
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5 Comparisons between model results and labo-

ratory data

In this section, we will assess the ability of both the complete NSW model and

the simplified one-way model to predict the transformation of periodic ISZ broken

waves. We present comparisons between numerical solutions and spilling breaking

experiments.

The main set of comparisons is based on an experiment performed by Cox

(1995). This experiment was carried out in a wave flume 33 m long, 0.6 m wide and

1.5 m deep. Waves were generated on a horizontal bottom at a depth of 0.40 m,

shoaled, and broke on a 1:35 planar slope. The wave height at the wavemaker was

Hw = 0.115 m and the wave period T = 2.2 s. Measurements of surface elevation

and velocity were taken at four locations inside the ISZ (see figure 6). The velocities

were measured with a two-component laser Doppler velocimeter (LDV).

NSW and one-way equations are solved with the same shock-capturing nu-

merical method: a TVD Mac Cormack scheme. The implementation of this method

for solving the NSW equations is presented in appendix B. The seaward boundary

condition of the two models is given by time series of water depth measured at the

first location L1. The computational domain was discretized by 200 nodes using

a grid spacing of Δx = 0.04 m, and the models were run with a time step Δt =

0.01 s. The spatial and time steps corresponded respectively to Δx = λ0/72 and

Δt = T/220, where λ0 is the wavelength at the seaward boundary L1.
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5.1 NSW shock-wave model

The initial condition of no wave motion (still water) leads to a transient period of

200 s, which is eliminated from time series presented hereafter. Previous numerical

studies by Kobayashi et al. (1987) and Cox (1995) have shown that ISZ predictions

were not very sensitive to the value of the friction coefficient fr, when 0.01 ≤ fr ≤

0.05. In the subsequent computations we used a fixed coefficient fr = 0.015.

Figure 7 shows computed and measured time series of surface elevation at

different locations inside the ISZ. The NSW model reproduces the nonlinear wave

distortion and gives a good prediction of the wave height decay. The evolution to-

wards the sawtooth shape is accurately computed by the model. Previous studies,

using NSW models (Kobayashi et al. (1989), Tega and Kobayashi (2002)) or Boussi-

nesq models (Madsen et al. (1997) and Ozanne et al. (2000)), showed numerical

oscillations at the rear of wave fronts. We can see in figure 7 that our shock-capturing

method prevents such numerical oscillations. The good phase agreement between

computed and measured time series shows that the shock velocity cb, given by the

shock conditions (equations (20) and (21)), is a good estimate of the wave front

velocity.

To emphasize this point we present in figure 8 a comparison between exper-

imental wave front positions and a wave front trajectory computed by the NSW

model. In addition, we plot in this figure trajectories computed from two other

wave front celerity expressions. The first one, cb1 =
(
(gh1h2(h1 + h2))/(2h̄

2)
)1/2

,

corresponds to the classical bore model (see appendix A). The second one, cb2 =

1.3(gd)1/2, is an empirical expression which is usually applied to estimate wave front
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celerity (or roller celerity) in Boussinesq models (Schäffer et al. (1993)). Figure

8 shows a very good agreement between measured wave front positions and NSW

model results. We observe that trajectories computed from cb1 and cb2 are close to

the measured trajectories. However, as already noticed by Bonneton (2004), the

expression cb2 slightly overestimates the wave front celerity and can not be applied

in the swash zone, and cb1 slightly underestimates the wave front celerity. The abil-

ity of the NSW weak solution to predict the wave front celerity is not limited to

regular waves. Bonneton et al. (2005) have shown that the NSW model also gives

an accurate prediction for the celerity of irregular waves propagating over gently

sloping beaches.

Figure 9 shows the cross-shore variations of the minimum and maximum values

of wave elevation, ζmin and ζmax. We observe that computed ζmin and ζmax are in

close agreement with measurements. Model-data comparisons from another spilling

breaking experiment, performed by Ting and Kirby (1996), are presented in figure

10. This experiment is similar to Cox’s experiment, with β = 1/35, T = 2 s and

Hw = 0.125 m, but the ζ-measurement spatial density is higher. Figure 10 confirms

the ability of the NSW model to predict ζmin and ζmax cross-shore variations, and

then the wave height decay in the ISZ.

To go further in analyzing the predictive capability of the NSW model, the

results are compared with the phase-averaged measured horizontal velocities 〈v1〉.

The measurements are limited to the regions away from the crest because with

the LDV technique it is not possible to measure velocities in the highly aerated

region near the front of the breaker. Figure 11 shows the vertical variations of 〈v1〉,
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measured at L3 for times t = t∗, t = t∗ + T/6, t = t∗ + 2T/6, t = t∗ + 3T/6,

t = t∗ + 4T/6 and t = t∗ + 5T/6, where t∗ is the time at which the zero-upcrossing

of the surface elevation occurs. The solid line represents the vertical average of

these velocity data, um = 1
ζm+d

∫ ζm
−d

〈v1〉 dz, where ζm is the highest measurement

elevation. As already noticed in section 2, the wave field in the regular wave region

RWR is characterized by a nearly vertically uniform horizontal velocity (see figures

11a,b,e,f). In RWR, we observe that the computed depth-averaged velocity u is a

good estimate of 〈v1〉. Conversely, the wave front WF is characterized by a strong

vertical variation of 〈v1〉 (see figure 11c). In this zone, u is not representative of the

velocity 〈v1〉 below z = ζm and is much greater than um.

Figure 12 presents the temporal variations of computed and measured depth-

averaged velocities at locations L1, L2, L3 and L4. This figure shows that, in the

RWR and particularly in the wave trough, u is a good estimate of um. Conversely,

we observe that in the WF, u is much greater than um. This observation does not

necessary challenge NSW weak-solutions. Indeed, we do not compare exactly the

same quantities, since um is integrated between z = −d and z = ζm and u is inte-

grated over the whole depth. Moreover, we know from Particle Image Velocimetry

(PIV) observations (e.g. Govender et al. (2002)), that 〈v1〉 is much greater in the

front part of the wave crest (z > ζm) than in the lower part. An accurate PIV

determination of the depth-averaged velocity (over the whole depth), would be very

useful to make clear the validity limits of NSW weak-solutions in the ISZ.

For regular broken waves propagating over a low-slope beach, such as those

experimentally studied by Cox (1995) and Ting and Kirby (1996), wave reflexion
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is small. Figure 13 presents the computed Riemann invariant α− = u − 2c, at a

given time, as a function of x. This figure shows that α− is approximately equal to

ū− 2c̄, excepted close to the shoreline. In accordance with the simple-wave solution

presented in section 4, we observe small jumps in α− at shocks (see equation (33)).

Nevertheless, ū − 2c̄ is a good estimate of α− in the ISZ. This result confirms the

validity of the main hypothesis on which our one-way model is based.

5.2 One-way shock-wave model

One-way solutions are determined from an iterative method, starting with h̄ = d(x)

and ū = 0 at the first iteration. Wave elevation fluctuations, ζ̃ = h − h̄, and wave

velocity fluctuations, ũ = u− ū, are computed from equations (37) and (38). Then,

a new estimate of ū is calculated from the time-averaged mass conservation equation

ū = −1

h̄
ζ̃ũ

and h̄ = ζ̄ + d is given by the new setup expression (see section 4) neglecting the

friction term

∂ζ̄

∂x
=

1

4cbT

(h2 − h1)
3

h1h2

− 1

g

∂

∂x

(
1

2
u2

)
, (39)

or alternatively is given by the classical setup model (see Longuet-Higgins and Stew-

art (1964) or Mei (1989))

∂ζ̄

∂x
= − 1

ρgh̄

∂S̃

∂x
, (40)

where S̃ = ρ(h̄ũ2+ 1
2
gζ̃2+ ζ̃ ũ2− ζ̃ ũ

2

/h̄) is the radiation stress in shallow water. The

iterative method requires about five iterations to converge to the solution.

Comparisons between one-way results and measurements by Cox (1995), figure

14, and Ting and Kirby (1996), figure 15, are presented. In these two figures, we can
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see that the one-way shock-wave model gives a good prediction of the wave elevation

field, and in particular the wave height decay and the mean setup. Contrary to the

NSW model, the one-way model slightly underestimates ζmin. However, we observe

in figures 14 and 15 that computed ζmin and ζmax are globally in agreement with

measurements.

Figures 14 and 15 also show that one-way solutions propagate slightly slower

than NSW solutions. This observation is coherent with the simple-wave hypotheses

which lead to a shock celerity cbs slightly smaller than the exact NSW celerity cb (see

figure 3). However, figure 16 shows that trajectories computed from the one-way

model are closed to the measured trajectories. In particular, the one-way model

gives better results than the classical bore model. Bonneton (2004) has presented a

more detailed analysis of ISZ broken-wave kinematics and proposed a cb-expression

slightly more accurate than equation (38).

5.3 Energy dissipation and wave setup

We discuss now the ability of NSW and one-way shock-wave solutions to predict

time-averaged wave quantities such as potential energy, Ep =
1
2
ρg(ζ − ζ̄)2, and wave

setup ζ̄.

Figure 17 presents the cross-shore variation of the potential energy Ep. This

figure shows that NSW and one-way models give good predictions of the shore-

ward spatial decrease of Ep. These results confirm a previous work, by Bonneton

(2001)), which showed that the mean energy dissipation predicted by the shock-

wave concept, Dbm , was in agreement with experimental measurements. Previous

studies by Svendsen et al. (1978) and Stive (1984), about ISZ energy dissipation,
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led to different conclusion. Analyzing the contribution of the various terms in the

energy equation (24), these authors showed that the actual energy dissipation was

substantially larger than the shock-wave dissipation Dbm . However, the experimen-

tal estimation of the energy flux F̄ required detailed velocity information in the

broken-wave crest, which were not available. The energy flux F̄ was estimated from

velocity extrapolation which reduced the accuracy of the analysis. Moreover, Dbm

was estimated using the classical bore model, which gives only an approximation

of the mean shock-wave dissipation (see appendix A). Conversely, results presented

in this paper (figures 9, 10, 14, 15 and 17), as well as previous numerical results

by Kobayashi et al. (1989), Cox (1995) and Bonneton et al. (2000, 2001, 2005),

indicate that the local shock-wave energy dissipation Db (equation (25)), or its one-

way formulation Dbs (equation (35)), represent good estimates of the actual energy

dissipation.

Figure 18 presents the measured and computed variations of the time-averaged

free surface elevation ζ̄, for a third spilling breaking experiment, performed by Buhr-

Hansen and Svendsen (1979). We observe in the three figures 9, 10 and 18 that the

setup ζ̄ is accurately predicted by the NSW model. This shows that the NSW weak

solution represents an appropriate model for describing the ISZ setup.

As shown in figures 14, 15 and 19, the wave setup is also well predicted by the

one-way shock-wave model. Figure 19 shows that the new setup equation (equation

(39)) gives similar results than the classical setup equation (equation (40)). The

new setup equation, which directly relies ∂ζ̄
∂x

and shock characteristics (h1, h2 and

cb), can represent an useful alternative to the implicit classical setup formulation.
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6 Conclusion

In this paper, we have presented a detailed analysis of the approximations involved

in the time-dependent NSW shock-wave model. This model is based on the theory

of weak solutions for conservative equations, which allows to predict global wave

evolution without a detailed description of small-scale processes located at wave

fronts. We have extended the classical presentation of NSW weak solutions (Stoker

(1957)), by taking into account non-flat bottom and friction effects.

This shock-wave theory allows to derive time-averaged equations, such as the

energy equation, in a more general context than the classical bore model (Svendsen

et al. (1978)) generally used in coastal engineering. In particular, we have obtained,

from time-averaging of the non-conservative momentum equation, a new equation

(equation 28) to compute ISZ wave setup as a function of the energy dissipation.

We have also derived a new one-way shock-wave model (equations 37 and

38), which applies to the transformation of non-reflective periodic broken waves on

gently sloping beaches. Even if numerical solutions of the complete NSW model can

be easily computed, our simplified one-way approach is useful to provide breaking-

wave parameterizations (in particular broken-wave celerity expression) in both time-

averaged wave models and time-dependent Boussinesq-type models.

A detailed comparison with spilling wave-breaking experiments, has shown

that both NSW and one-way shock-wave solutions compare very well with experi-

mental data. Both models reproduce the nonlinear wave distortion leading to the

sawtooth shape, and gives a good prediction of broken-wave celerity cb, wave height

decay and time-averaged quantities such as wave setup.
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These results show that NSW weak solutions represent an appropriate theory

for describing both time-varying and time-averaged quantities in the ISZ. Up to now,

for ISZ time-averaged applications, NSW shock-wave theory was mainly used in a

restricted context based on the classical bore model and the analogy between ISZ

broken waves and hydraulic jumps (e.g. Le Méhauté (1962), Battjes and Janssen

(1978) or Svendsen et al. (1978, 2003)). It is worthwhile to note that NSW shock-

wave solutions can be applied to any ISZ broken wave and not only to hydraulic

jumps. Contrary to previous studies by Svendsen et al. (1978) and Stive (1984), our

results indicate that theoretical dissipation Db (equation (22)) is a good estimate

of the actual energy dissipation. To solve this controversy, and more generally to

make clear validity limits of NSW weak-solutions, accurate PIV measurements in

ISZ-wave fronts would be very useful.
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A The classical bore model

In most of time-averaged surf zone models, broken-wave celerity and energy dissipa-

tion are estimated from the classical bore model. This model, initially introduced

by Le Méhauté (1962), is based on the analogy between a breaking wave and an hy-

draulic jump (see figure 20). In this appendix we briefly recall the main hypotheses

of this model (see also Battjes (1978) and Svendsen et al. (1978, 2003)).

The classical bore model relies on two sets of approximations. The first one

corresponds to the NSW hypotheses discussed in section 2 :

• A1: both vertical non-uniformity of the horizontal velocity and non-hydrostatic

effects are negligible (K2 � 1 and μ � 1).

The second set of approximations stems from the analogy between broken waves

and hydraulic jumps, illustrated in figure 20:

• A2: the bottom is considered as a locally horizontal bottom

• A3: the wave has a quasi-constant form

• A4: breaking waves are considered as saturated breakers (i.e. H = h2 − h1)

From mass and momentum conservation equations and using all the previous

approximations it is straightforward to show that the volume flux in the reference

frame moving at cb, Q = h(u− cb), is spatially constant and given by

Q = −
(gh1h2(h2 + h1)

2

) 1
2

(41)

and that the local dissipation Db writes

Db =
ρg

4

|Q|
h1h2

H3 .
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For a periodic wave field the total mean volume flux, hu = Q̄ + cbh̄, is equal to

zero. Since we assume that the wave has a quasi-constant form (A3 approximation),

Q̄ = Q and then

Q = −cbh̄.

Combining this expression with Eq. (41) we find the classical bore model for the

broken-wave celerity

cb =
(gh1h2(h1 + h2)

2h̄2

) 1
2
, (42)

and for the mean energy dissipation Dbm = Db/(cbT )

Dbm =
ρg

4T

h̄

h1h2
H3 , (43)

where T is the wave period.

Most of time-averaged surf zone models are based on Equations (42) and (43)

(e.g. Svendsen et al. (1978, 1984, 2003) or Stive (1984)), or on a simplified version

of these equations (e.g. Battjes and Janssen (1978) or Thornton and Guza (1983)),

with a linear estimate of the celerity, cb = (gh̄)
1
2 , and a mean dissipation given by

Dbm =
ρg

4T

H3

h̄
. (44)

It is important to note that the classical bore model is associated with three

approximations (A2, A3 and A4) which are not required in the NSW shock-wave

approach. Equation (42) corresponds to an approximation of the broken-wave celer-

ity cb and then equation (43) is an approximation of the exact energy dissipation

expression given by equation (25).
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B Numerical scheme

First numerical simulations of broken-wave propagation on a beach (Hibberd and

Peregrine (1979) and Kobayashi et al. (1989)) were based on the Lax-Wendroff

scheme. This explicit finite-difference scheme, second-order accurate in space and

time, has been successfully applied to solve numerous problems in gas dynamics.

However, in the presence of fronts, the dispersive properties of this scheme introduce

spurious numerical oscillations. Some dissipation is needed to give nonoscillatory

shocks and to ensure that the numerical solution converges to the entropy weak

solution. The most simple way to do this is to add an additional ”artificial viscosity”

term (e.g. Hibberd and Peregrine (1979) and Kobayashi et al. (1989)). The difficulty

with this empirical approach is that it is hard to determine an appropriate ”artificial

viscosity” that introduces just enough dissipation to prevent numerical oscillations

without causing unnecessary smearing. An alternative to this method is to use a

TVD (total variation diminishing) flux limiter scheme, which represents a rational

method for the determination of artificial dissipation terms (see LeVeque (1992)).

Following this approach, we have chosen a method based on a MacCormack

scheme with a TVD flux limiter, which has been initially developed by Yee (1987) for

solving the Navier Stokes compressible equations. The same method has been also

implemented with success by Garcia-Navarro et al. (1992) to solve NSW equations

for flood processes and hydraulic problems.

A brief presentation of the main steps of the numerical method is given here,

but a complete description of the model can be found in Vincent et al. (2001). NSW
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equations can be expressed in vectorial form as:

∂q

∂t
+

∂F

∂x
= S (45)

q =

(
h
hu

)
, F =

(
hu

hu2 + 1
2
gh2

)
, S =

(
0

gh ∂d
∂x

− 1
2
fr|u|u

)
.

Let qn
i be the numerical solution of equation (45) at x = iΔx and t = nΔt, with

Δx the spatial mesh size and Δt the time step. The TVD MacCormack scheme can

be expressed in three steps:

(a) predictor step

q1
i = qn

i −
Δt

Δx
(Fn

i+1 − Fn
i ) + ΔtSn

i

(b) corrector step

q2
i =

1

2

(
q1
i + qn

i −
Δt

Δx
(F1

i − F1
i−1) + ΔtS1

i

)

(c) TVD step

qn+1
i = q2

i +
Δt

2Δx
(Rn

i+ 1
2
Φn

i+ 1
2
− Rn

i− 1
2
Φn

i− 1
2
)

where the notation i + 1
2
corresponds to quantities estimated at the mesh interface

(i, i + 1). R is the right-eigenvector matrix of the flux Jacobian matrix A = ∂F
∂q

.

The lth component of the vector Φn
i+ 1

2

is defined by:

(φl
i+ 1

2
) =

1

2

(
|al

i+ 1
2
| − Δt

Δx
(al

i+ 1
2
)2
)
(αl

i+ 1
2
−Ql

i+ 1
2
)

where al
i+ 1

2

represents the lth component of the vector of local characteristic speeds,

αi+ 1
2
= R−1

i+ 1
2

(qi+1 − qi), and Ql
i+ 1

2

= minmod(αl
i− 1

2

, αl
i+ 1

2

, αl
i+ 3

2

) is the flux limiter.
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At the interface of the meshes qi+1/2 is determined by Roe’s averaging, which is an

approximate Riemann solver.

Steps (a) and (b) describe the classical MacCormack scheme, whereas the step

(c) is a TVD flux correction. The TVD MacCormack scheme so obtained retains

second-order precision in space and time in regular zones, and is oscillation-free

across wave fronts. As explained by LeVeque and Yee (1990) and Garcia-Navarro

et al. (1992), the main reason for choosing the predictor-corrector step instead of

the one-step Lax-Wendroff formulation is that the former provides a natural way to

include the source terms S keeping second order accuracy in time and space, whereas

the one-step Lax-Wendroff scheme needs a specific treatment to do so. However,

our method is limited to gently sloping beaches. For strongly varying bathymetry a

”well-balanced scheme” is required (e.g. Greenberg and Leroux (1996) and Gallouët

et al. (2003)).

At the seaward boundary we have implemented a method based on the fact

that in the ISZ the flow is subcritical. Following Cox et al. (1994), we compute the

outgoing Riemann invariant by an implicit scheme. This method allows to specify

the measured water depth h(t) directly at the seaward boundary of the domain

(x = 0). To manage the swash zone evolution we impose in dry meshes a thin water

layer hmin = 10−4m, with u = 0. Thus, NSW equations are solved everywhere in the

computational domain. However, at the shoreline (wet meshes next to dry meshes)

a specific treatment is applied to the discretization of the momentum equation. It

consists in omitting the landward spatial differences of the horizontal hydrostatic

pressure gradient, gh ∂ζ
∂x
, in the predictor and corrector steps. Vincent et al (2001)
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have shown that this simple numerical treatment gives accurate results in describing

shore-line evolution for a non-breaking wave climbing a beach.
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C Numerical estimation of the shock-wave energy

dissipation

The objective of this section is to show the ability of our shock-capturing numerical

method to converge to the entropy weak solution of the NSW equations and then to

compute the shock-wave energy dissipation. We present two comparisons between

analytical weak solutions and numerical solutions. First, we compute the hydraulic

jump associated with a dam-break on wet bottom and second we simulate the energy

dissipation of a periodic broken wave on a flat bottom (see section 4 for the analytical

solution). Finally, we analyze the numerical model sensivity to the spatial resolution.

Dam-break and hydraulic jump

A vertical wall is initially located at the middle of a frictionless channel. This wall

separates the water with an upstream depth hu and a downstream depth hd (see

figure 21). When the wall is removed a shock, or an hydraulic jump, occurs and

reaches immediately its full strength. The analytical weak solution of this problem

was developed by Stoker (1957). The constant water depth upstream the shock, hs,

is given by the implicit equation

2
hs

hd
+

(
hs

hd
− 1

)(
1

2
(1 +

hs

hd
)

)1/2

− 2

(
hs

hd

)1/2(
hu

hd

)1/2

= 0,

and the constant dimensionless energy dissipation Da = Db/(ρg(ghd)
1/2h2

d) is given

by equation (22 ), which writes

Da =
1

4
(
hs

hd
− 1)3

( hs

2hd
(1 +

hs

hd
)
)1/2

. (46)

In figure 21, a numerical simulation for a 100 m long channel, hu=3m and hd=1m, is

compared with the analytical weak-solution. There is practically no distinguishable
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difference between analytical and computed water depth at time t = 8 s. The time

evolution of the total energy E, integrated over the channel, is shown in figure

22. Except a small lag, due to numerical diffusion, for the first time steps of the

simulation, the energy decay is in agreement with the analytical weak solution, and

corresponds to the constant dissipation given by equation (46). This numerical

test shows that, for hydraulic jumps, our shock-capturing method gives a numerical

solution of the energy dissipation which is in agreement with the theoretical one.

Periodic wave on a flat bottom

We now investigate the behaviour of a different type of propagation, in which wave

distortion proceeds continuously like in the ISZ. Figure 23 shows a comparison be-

tween the NSW numerical solution of the initial sine-wave transformation and the

simple-wave solution described in section 4. The process of wave distortion, leading

to the formation of a sawtooth shape profile, is correctly computed by the model.

Until the shock forms at t = ts, there is no distinguishable difference between analyt-

ical and computed solutions (see figure 23b). After the shock formation (see figures

23c,d), we notice that the NSW computed wave front propagates slightly faster than

the simple-wave shock. This is coherent with the simple-wave hypotheses which lead

to a shock velocity cbs slightly smaller than the exact NSW shock velocity cb (see

figure 3a). Figure 24 shows that the analytical energy dissipation is well reproduced

by our shock-capturing method.

To assess the effect of spatial resolution on shock-wave solution, numerical

simulations performed with two different mesh sizes are presented in figure 25. The

two solutions are similar, excepted at the wave front where the lower resolution
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provides, of course, a wider front. This figure shows that the computed shock-

wave kinematics is, to a great extent, independent on the spatial resolution. The

time evolution of the energy dissipation computed with two different mesh sizes is

presented in figure 26. We can see in this figure that the energy dissipation is weakly

dependent on the resolution.

In conclusion, if the spatial mesh size is sufficiently small to describe the wave

front, the numerical solution given by our TVD shock-capturing method is practi-

cally independent on the spatial resolution and converges to the NSW weak solution.
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Figure captions

Figure 1: Definition sketch. a, cross-section of a broken-wave in the ISZ (RWR,

regular wave region; WF, wave front); b, shock-wave representation. cb is the broken-

wave celerity, H the wave height, h the water depth and subscript 1 and 2 indicate

values respectively ahead and behind the shock.

Figure 2: Surface elevation and velocity data in the ISZ from Cox (1995); d0 = 7.43

cm, a0 = H0/2 = 2.52 cm, T = 2.2 s and β = 1/35. a, temporal variations of

nondimensional phase-averaged free surface elevation 〈ζ〉/a0; b, vertical variations

of nondimensional phase-averaged horizontal velocity 〈v1〉/U . •, measured velocity;

, depth-averaged velocity; − · − · −, free surface elevation.

Figure 3: Relative errors of the simple-wave shock velocity cbs and dissipation Dbs

compared to the exact shock velocity cb and dissipation Db, as a function of the

shock strength ε. a, (cb − cbs)/cbs ; b, (Db −Dbs)/Dbs.

Figure 4: Dimensionless energy dissipation Da = Dbs/(ρgc0d
2
0) of a sine wave (ε0 =

0.3), as a function of time.

Figure 5: Multi-valued solution and equal area construction for the position of the

shock.

Figure 6: Schematic view of the experimental setup, Cox (1995), and the compu-

tational domain. β = 1/35, T = 2.2 s and Hw = 0.115 m. Four measurement



cross-sections are located in the ISZ: L1 (x = 0 m, d = 0.1771 m); L2 (x = 1.2 m,

d = 0.1429 m); L3 (x = 2.4 m, d = 0.1086 m); L4 (x = 3.6 m, d = 0.0743 m). The

computational domain starts at x = 0 m, where the seaward boundary condition is

given by time series of water depth at L1.

Figure 7: Time series of surface elevation in the inner surf zone. Comparison between

NSW numerical model (dashed line) and experiments by Cox (1995) ( solid line).

a, L1 (x = 0 m, d = 0.1771 m); b, L2 (x = 1.2 m, d = 0.1429 m); c, L3 (x = 2.4 m,

d = 0.1086 m); d, L4 (x = 3.6 m, d = 0.0743 m).

Figure 8: Comparison between computed wave front trajectories and experimental

wave front positions. NSW model (solid line); cb1 model (long-dashed line); cb2

model (short-dashed line); experimental data from Cox (1995) (×).

Figure 9: Spatial evolution of wave elevation. Comparison between the NSW numer-

ical model and experiments by Cox (1995). Computed ζmin and ζmax (short-dashed

lines); computed ζ̄ (long-dashed line); instantaneous surface elevation at a given

time ti (solid line); measured ζmin and ζmax (�); measured ζ̄ (∗).

Figure 10: Spatial evolution of wave elevation. Comparison between the NSW

numerical model and experiments by Ting and Kirby (1996) (β = 1/35, T = 2 s

and Hw = 0.125 m). Computed ζmin and ζmax (short-dashed lines); computed ζ̄

(long-dashed line); instantaneous surface elevation (solid line); measured ζmin and

ζmax (�); measured ζ̄ (∗).



Figure 11: Vertical structure of the phase-averaged horizontal velocity 〈v1〉 at L3.

•, measured velocity (Cox (1995)) ; , depth-averaged measured velocity um ;

− − −, computed depth-averaged velocity u ; − · − · − , free surface position. a,

t = t∗; b, t = t∗ + T/6; c, t = t∗ + 2T/6; d, t = t∗ + 3T/6; e, t = t∗ + 4T/6; f,

t = t∗ + 5T/6.

Figure 12: Time series of depth-averaged velocity in the inner surf zone. Comparison

between NSW computed velocity u (dashed line) and um estimated from the data

of Cox (1995) ( solid line). a, L1 (x = 0 m, d = 0.1771 m); b, L2 (x = 1.2 m,

d = 0.1429 m); c, L3 (x = 2.4 m, d = 0.1086 m); d, L4 (x = 3.6 m, d = 0.0743 m).

Figure 13: NSW computed Riemann invariant α− = u− 2c divided by ū− 2c̄, at a

given time ti (see the surface elevation in figure 9), as a function of x.

Figure 14: Spatial evolution of wave elevation. Comparison between the one-way

model and experiments by Cox (1995). Computed ζmin and ζmax (short-dashed

lines); computed ζ̄ (long-dashed line); instantaneous surface elevation at a given

time ti (solid line); measured ζmin and ζmax (�); measured ζ̄ (∗) ; NSW instantaneous

surface elevation at ti (dot-dashed line).

Figure 15: Spatial evolution of wave elevation. Comparison between the one-

way model and experiments by Ting and Kirby (1996) (β = 1/35, T = 2 s and

Hw = 0.125 m). Computed ζmin and ζmax (short-dashed lines); computed ζ̄ (long-

dashed line); instantaneous surface elevation (solid line); measured ζmin and ζmax



(�); measured ζ̄ (∗); NSW instantaneous surface elevation (dot-dashed line).

Figure 16: Comparison between computed wave front trajectories and experimen-

tal wave front positions. NSW model (solid line); one-way model (dashed line);

experimental data from Cox (1995) (×).

Figure 17: Measured and computed cross-shore variations of the potential energy

Ep. Cox (1995) experiment (∗); NSW model (solid line); one-way model (dashed

line).

Figure 18: Cross-shore variations of the wave setup. Comparisons between NSW

numerical model (solid line) and experiments by Buhr-Hansen and NSWendsen

(1979)(�). β = 1/34.26, T = 1.452 s and Hw = 0.0943 m.

Figure 19: Measured and computed cross-shore variations of the wave setup. Ting

and Kirby (1996) experiment (∗); NSW numerical model (solid line); one-way model

(dashed line).

Figure 20: Classical analogy between broken-wave and hydraulic jump. h is the

water depth and subscript 1 and 2 indicate values respectively ahead and behind

the wave front. cb is the broken-wave velocity

Figure 21: Comparison between computed water depth profile (short-dashed line)

and analytical weak-solution (solid line) of the dam-break problem at t = 8 s. Initial

condition (long-dashed line): hd = 1 m, hu = 3 m. Numerical parameters: Δx = 0.1

m, Δt = 0.01 s.



Figure 22: Time evolution of wave energy (E0 − E)/E0 for the dam-break problem

(E0 = E(t = 0)). Comparison between analytical weak-solution (solid line) and

numerical solution (short-dashed line). Initial condition: hd = 1 m, hu = 3 m.

Numerical parameters: Δx = 0.1 m, Δt = 0.01 s.

Figure 23: Comparison between analytical simple-wave solution (solid line) and

numerical solution (short-dashed line) of the initial sine wave (ε0 = 0.3) trans-

formation in the moving coordinate system x1 = x − c0t. Numerical parameters:

Δx/λ0 = 2 10−3 , Δt/(c0λ0) = 6.4 10−5. a, t/ts = 0; b, t/ts = 1; c, t/ts = 1.2; d,

t/ts = 2.

Figure 24: Time evolution of the dimensionless energy dissipationDa = Dbs/(ρgc0d
2
0).

Comparison between analytical simple-wave solution (solid line) and numerical solu-

tion (short-dashed line) of the initial sine wave (ε0 = 0.3) transformation. Numerical

parameters: Δx/λ0 = 2 10−3 , Δt/(c0λ0) = 6.4 10−5.

Figure 25: Numerical solutions of the initial sine wave (ε0 = 0.3) transformation in

the moving coordinate system x1 = x− c0t, at t/ts = 2 with Δt/(c0λ0) = 6.4 10−5.

Dashed line, Δx/λ0 = 2 10−3; short-dashed line, Δx/λ0 = 10−2.

Figure 26: Time evolution of the dimensionless energy dissipationDa = Dbs/(ρgc0d
2
0),

for two different spatial resolutions. Dashed line, Δx/λ0 = 2 10−3; short-dashed line,

Δx/λ0 = 10−2.
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