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Freely decaying turbulent flows in a stably stratified fluid are simulated with a
pseudo-spectral numerical code solving the fully nonlinear Navier–Stokes equations
under the Boussinesq approximation with periodic boundary conditions. The flow
is decomposed into a turbulent field and a horizontal mean flow ū(z, t) defined as
the average of the horizontal velocity component in a horizontal plane at height z
and time t. Similarly, the density field is decomposed into a turbulent field and a
(stable) mean density profile ρ̄(z, t) defined as the average of the density field in a
horizontal plane at height z and time t. Attention is paid to the effect of the turbulent
velocity field on an initial z-periodic horizontal mean flow (Simulation A) or an initial
z-periodic perturbation of the mean density profile (Simulation B). Both A and B are
performed under conditions of moderate and strong stratification and are compared
to the non-stratified simulations.

Simulation A shows that the turbulence–mean flow interaction is strongly affected
by the buoyancy forces. In the absence of a stratification, the mean flow perturbation
decays rapidly due to the turbulent diffusion of momentum. When a moderate
stratification is applied, the mean flow perturbation decays much more slowly whereas
it oscillates and grows with time when the stratification is strong. These results are
interpreted by defining a time-dependent eddy viscosity. Whereas the eddy viscosity
coefficient has positive values in the non-stratified simulation, it is affected by the
buoyancy forces and decreases after a period of order N−1 in the stratified simulations
(where N is the Brunt–Väisälä frequency associated with the background linear
stratification). At large time, we find that the eddy viscosity remains roughly zero
when the stratification is moderate, whereas it oscillates but remains persistently
negative in the strongly stratified case, which causes the horizontal mean flow to
accelerate.

In Simulation B, we find that a perturbation in the mean density profile oscillates on
a timescale of order N−1 (where N is the Brunt–Väisälä frequency associated with the
background linear stratification) and remains almost unaffected by the turbulent field
for large time. This shows that the stable stratification strongly inhibits the mixing
efficiency of turbulence which usually tends to diffuse any scalar in non-stratified
flows. We define a time-dependent eddy diffusivity coefficient which is found to take
negative values after a period of order N−1. For large times, the eddy diffusivity
oscillates and its time-averaged value over a few turnover timescales is positive but
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small when the stratification is moderate, and roughly zero when the stratification is
strong.

We conclude that the presence of a stable stratification strongly affects the temporal
behaviour of the mean quantities ū and ρ̄ in turbulent flows and partly explains the
formation of horizontal layers in stratified geofluids such as oceans and atmospheres.

1. Introduction
Oceans and atmospheres are usually stably stratified in density due to salinity

and temperature vertical gradients. The dynamics of stratified geofluids are known
to exhibit a very particular phenomenology and have been the subject of many
experimental, numerical and theoretical studies. The issue of mass and momentum
transport in stably stratified turbulent flows not only is interesting from a fundamental
point of view but is also a key to better understanding the mixing and dynamical
processes in environmental or industrial problems.

To investigate the effect of a stable density gradient on turbulent flows, the toy prob-
lem of freely decaying turbulence has already been extensively studied in laboratory ex-
periments (see for instance the grid-turbulence experiments in salted water of Komori
et al. 1983 and Itsweire, Helland & Van Atta 1986, and the wind tunnel experiments of
Lienhard & Van Atta 1990 and Yoon & Warhaft 1990) and numerical simulations (Ri-
ley, Metcalfe & Weissman; Métais & Herring 1989; Gerz & Schumann 1991; Kimura
& Herring 1996; Galmiche, Thual & Bonneton 1998). In such flows, complexity arises
from the coexistence of two timescales: the turnover timescale associated with the
eddy structures and the Brunt–Väisälä, or buoyancy period, associated with the buoy-
ancy restoring forces acting on the fluid particles. Thanks to laboratory experiments
and numerical simulations, it is now well known that the major effect of the buoyancy
forces is to reduce dramatically the vertical kinetic energy and vertical turbulent trans-
port, leading to the formation of vortical patches separated by strong horizontal vortex
sheets. The first clear experimental evidence of this phenomenum has been given by
Fincham, Maxworthy & Spedding (1996), whose results also show that the dissipation
in the stratified turbulent flow is mainly controlled by the local horizontal vorticity.

When initially isotropic turbulence is subjected to a sufficiently strong stratification,
one striking phenomenon is the oscillation in time of the buoyancy turbulent vertical
flux between positive and negative (i.e. counter-gradient) values (Riley et al. 1981;
Gerz & Schumann 1991). The development of counter-gradient fluxes in stratified
flows is consistent with the general conclusions of the stability analysis and, using the
framework of the rapid distortion theory, Hanazaki & Hunt (1996) have shown that
the time-oscillation of the fluxes could be described well by a linear model. A detailed
investigation of energy transfers in stratified turbulence is provided in Godeferd &
Cambon (1994).

The effect of a uniform vertical mean shear on stratified decaying turbulence has
been investigated experimentally by Piccirillo & Van Atta (1997) and numerically by
Gerz, Schumann & Elghobashi (1989), Holt, Koseff & Ferziger (1992) and Jacobitz,
Sarkar & Van Atta (1997) for instance. In the most strongly stratified flows, it
was found that the vertical buoyancy flux not only oscillates as time evolves, but
also remains persistently counter-gradient for large times. Persistent counter-gradient
momentum fluxes have also been measured.

In the present paper we use direct numerical simulation to study freely decaying
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stratified turbulence in the presence of a non-uniform vertical mean shear or a non-
uniform stratification. The mean flow profile ū and the mean density profile ρ̄ are
allowed to vary with height z and time t and we focus our attention on the signature
of the initial turbulent velocity field on these profiles. There are many reasons to
motivate these numerical experiments. First, we wish to get closer to realistic situations
encountered in oceans and atmospheres which are generally subject to non-uniform
stratification and stresses. Furthermore, these vertical variations modify the problem
of turbulence–mean interaction considerably since the vertical dependence of the mean
quantities is expected to induce vertical-dependent turbulent fluxes of buoyancy and
momentum which may in turn affect the mean density and mean flow profiles. Thus,
the time-dependence of the mean stratification and mean flow are strongly coupled
with their vertical dependence. This crucial aspect of turbulence–mean interaction in
stably stratified fluids has already been pointed out by Phillips (1972) and Posmentier
(1977) and is a key point in explaining the formation of horizontal layers as observed
in a number of laboratory experiments (e.g. Pearson & Linden 1983; Park, Whitehead
& Gnanadeskian 1994) in the final stage of decay of turbulence.

The case where the fluctuation field has small amplitude compared to the variations
in the mean fields has been extensively addressed using a linear stability analysis (e.g.
Miles 1961; Howard 1961 and more recently Majda & Shefter 1998). In this paper the
turbulence–mean field interaction is simulated in the more realistic situation where the
amplitude of the variations in the mean fields is of the same order as the amplitude
of the turbulent field. To describe this turbulence–mean interaction in the first stage
of decay of turbulence, direct numerical simulation is a powerful tool which allows
us to describe accurately the short-time evolution of the stratification and mean flow
profiles.

We use a pseudo-spectral code to simulate the Navier–Stokes equations under
the Boussinesq approximations. The computation domain is cubic, the boundary
conditions are periodic in all directions (with periodicity L) and the initial turbulent
velocity field is homogeneous and isotropic. When necessary, the results are ensemble-
averaged over a set of realizations. The equations of motion and other theoretical
considerations are provided in § 2. The numerical methodology and the generation of
the initial turbulent velocity field is described in § 3.

We first study the effect of the turbulent field on a shear flow profile ū(z) with
uniform stratification N (§ 4). The decay of turbulence is simulated in the presence
of an initially imposed mean flow profile varying as cos(2πz/L). The simulations
are performed under conditions of either moderate or strong stratification and are
compared to the non-stratified case.

The effect of the turbulent field on a mean density profile is investigated in § 5. The
stable, background linear profile is initially perturbed by a periodic profile varying
as cos(2πz/L) with no imposed mean shear. The simulations are performed under
conditions of either moderate or strong stratification. The results from these numerical
simulations are further discussed in § 6. A summary and some concluding remarks
are provided in § 7.

2. Theoretical background
2.1. Equations of motion

We make the Boussinesq approximation, neglecting the density fluctuations except
in the buoyancy term. We use a Cartesian coordinate system (e1, e2, e3) with the
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Linear mean profile z-Periodic mean profile Fluctuations

u(x, t) 0 ū(z, t) upol(x, t) + utor(x, t)
Ekin(t) Eū(t) + Ev̄(t) Epol(t) + Etor(t)
ρ(x, t) ρ̄l(z) ρ̄p(z, t) ρ′(x, t)

ρ̃(x, t) = ρ̄p(z, t) + ρ′(x, t)
Epot(t) Reference state Eρ̄(t) Eρ′ (t)

Table 1. Summary of the decomposition of the velocity and density fields. The velocity field is the
sum of the z-periodic mean profile ū(z, t) and of the turbulent fluctuations. The turbulent fluctuations
are the sum of the poloidal and toroidal velocity fields upol(x, t) and upol(x, t). The density field is
the sum of the stable, linear mean profile ρ̄l(z) (reference state with zero potential energy), the
z-periodic mean profile ρ̄p(z, t) and the turbulent fluctuations ρ′(x, t). The density fluctuations from
the linear mean profile are denoted by ρ̃(x, t).

ò (z, t) = òl(z) + òp(z, t)

òl(z)

1.0

0.5

0

z
L

Figure 1. Sketch of the mean density profile decomposition. The mean density profile ρ̄(z, t) at
time t is the sum of the background linear profile ρ̄l(z) and the periodic profile ρ̄p(z, t).

e3-direction antiparallel to the gravitational acceleration g. The spatial coordinates
are denoted by (x, y, z) = x and time by t. The velocity field is u(x, t) = (u, v, w) and
the fluid density ρ(x, t) may be decomposed as

ρ(x, t) = ρ̄(z, t) + ρ′(x, t), (2.1)

where ρ̄(z, t) is the spatial average of ρ at time t in the horizontal plane of height z
and ρ′(x, t) is the density deviation from ρ̄.

In this paper, fully periodic boundary conditions are used with periodicity L for
both the velocity and density fields. Then, ρ̄(z, t) is given by

ρ̄(z, t) = 〈ρ(x, t)〉xy, (2.2)

where operator 〈.〉xy is defined by

〈.〉xy =
1

L2

∫ L

0

∫ L

0

· dx dy. (2.3)

The mean density profile itself may be decomposed into a linear component ρ̄l (the
constant, background profile) and a z-periodic component ρ̄p which allows for the
non-uniformity of the stratification (see figure 1 and table 1):

ρ̄(z, t) = ρ̄l(z) + ρ̄p(z, t). (2.4)
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Provided that at each level ∂zρ̄ < 0, the stratification is stable everywhere and the
local Brunt–Väisälä frequency N is defined by

N2(z, t) = N2 − g

ρr

∂ρ̄p(z, t)

∂z
. (2.5)

Here, g is the norm of g, ρr is a suitable reference density and

N2 = − g
ρr

dρ̄l(z)

dz
(2.6)

is the squared Brunt–Väisälä frequency associated with the background linear strati-
fication.

The density fluctuations from the background linear profile will be denoted by
ρ̃(x, t) = ρ(x, t) − ρ̄l(z) = ρ̄p(z, t) + ρ′(x, t). Then, the equations of motion under the
Boussinesq approximation may be written as

∇ · u = 0,

∂tu+ (u · ∇)u = −ρr−1∇p− g(ρ̃/ρr)e3 + ν∇2u,

∂tρ̃+ (u · ∇)ρ̃ = (ρr/g)N2w + κ∇2ρ̃,

 (2.7)

where ∇ = (∂x, ∂y, ∂z), p is the pressure deviation from the hydrostatic profile, ν is the
kinematic viscosity and κ is the thermal diffusivity of the fluid.

2.2. Decomposition of the flow field

One can show (see Thual 1992) that an alternative description of any solenoidal
velocity field u = (u, v, w) with periodic boundary conditions is provided by knowing:

(i) w(x, t), the vertical velocity;
(ii) ∂xv − ∂yu = ζ(x, t), the vertical vorticity; and
(iii) ū(z, t) = ū(z, t)e1 + v̄(z, t)e2, the horizontal mean flow.

Here, the horizontal mean flow is defined by

ū(z, t) = 〈u(x, t)〉xy, (2.8)

where 〈.〉xy is defined by (2.3). In this decomposition, knowing the horizontal mean
flow ū is crucial to reconstruct the complete velocity field (u, v, w).

As in the present study fully periodic boundary conditions are used, the mean flow
profile is also z-periodic and there is no uniform background shear.

Using the above w–ζ–ū decomposition, the equations of motion become

∇ · u = 0,

∂t∇2w − ∇∧(∇∧[(u · ∇)u]) · e3 = −(g/ρr)∇2
Hρ̃+ ν∇4w,

∂tζ + ∇∧[(u · ∇)u] · e3 = ν∇2ζ,

∂tū+ ∂z〈uw〉xy = ν∂zzū, ∂tv̄ + ∂z〈vw〉xy = ν∂zzv̄,

∂tρ̃+ (u · ∇)ρ̃ = (ρr/g)N2w + κ∇2ρ̃,


(2.9)

where ∇H = (∂x, ∂y, 0).
It is useful to make the connection between the w–ζ–ū decomposition and the

often-used poloidal–toroidal decomposition (see for instance Riley & Lelong 2000):

u(x, t) = ū(z, t) + upol(x, t) + utor(x, t). (2.10)
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Here the poloidal and toroidal velocities are defined by

upol(x, t) = ∇∧[∇∧E(x, t)e3] and utor(x, t) = ∇ ∧ [B(x, t)e3], (2.11)

where functions E and B are such that w = −∇2
HE and ζ = −∇2

HB. The poloidal
component upol has zero vertical vorticity and the toroidal component utor has zero
vertical velocity. In this decomposition, the horizontal mean flow field ū cannot be
included either in the poloidal or in the toroidal fields and is again necessary to
reconstruct the complete velocity field (u, v, w). In the limit of small Froude numbers
(defined below), e.g. in the final stage of decay of turbulence, the poloidal and toroidal
energies may be associated with the wavy and vortical motions respectively (see Riley
et al. 1981; Riley & Lelong 2000 and also Staquet & Riley 1989 for the isopycnal
version of the decomposition).

2.3. Energy partition

As the computation domain is periodic, the kinetic energy per unit mass averaged
over the box may be written as

Ekin(t) = Eū(t) + Ev̄(t) + Epol(t) + Etor(t), (2.12)

where Eū(t) = (1/2)〈ū2〉z (respectively Ev̄(t) = (1/2)〈v̄2〉z) is the energy of the x-
component (respectively the y-component) of the mean flow, Epol(t) = (1/2)〈u2

pol〉xyz
is the poloidal energy and Etor(t) = (1/2)〈u2

tor〉xyz is the toroidal energy. Here,

〈.〉z =
1

L

∫ L

0

· dz and 〈.〉xyz =
1

L3

∫ L

0

∫ L

0

∫ L

0

· dx dy dz. (2.13)

Taking the linear stratification ρ̄l as the reference state, the potential energy may be
written as

Epot(t) = Eρ̄(t) + Eρ′(t), (2.14)

where Eρ̄(t) = (1/2)(g/ρrN)2〈ρ̄2
p〉z is the energy of the density periodic mean profile

and Eρ′(t) = (1/2)(g/ρrN)2〈ρ′2〉xyz is the turbulent potential energy, (Note that Eρ̄
may also be called the background potential energy, and only Eρ′ makes up part of
the available energy.)

The total† energy E(t) in the box at time t is then

E(t) = Ekin(t) + Epot(t). (2.15)

The velocity, density and energy decompositions are summarized in table 1.

2.4. Context of the problem

In models of stratified geophysical flows such as oceanic or atmospheric flows, one
of the main difficulties is generally to model the effect of turbulence on the mean
quantities ū and ρ̄, especially when the energy is transferred from small to large scales.
The present analysis does not aim to take into account the effects of specific boundary
conditions or external forcing encountered in realistic situations, but is intended to
discuss the turbulence-mean interaction from a general point of view. Taking the
average in a horizontal plane of the equation of ρ̃, we obtain the evolution equation
for ρ̄(z, t) as

∂tρ̄ = −∂zFρ + κ∂zzρ̄, (2.16)

† Here the word ‘total’ has to be understood in the mechanical sense (‘kinetic plus potential’),
not the thermodynamical sense.
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where Fρ = 〈ρw〉xy is the vertical turbulent buoyancy flux. Similarly, the equation for
ū(z, t) is

∂tū = −∂zFu + ν∂zzū, (2.17)

where Fu = 〈uw〉xy is the vertical turbulent momentum flux and a third equation for
v̄(z, t) is obtained with Fv = 〈vw〉xy . In the absence of a stratification (i.e. when ρ is a
passive scalar), the eddy fluxes of mass and momentum are generally modelled using
the concept of eddy diffusivity and viscosity which depend on local properties such as
the mixing length and intensity of turbulence. In most cases, these eddy coefficients
have positive values. When a stable stratification is present, the buoyancy term does
not appear explicitly in (2.16) and (2.17), but the stratification affects the fluctuations
of the flow field and thus the turbulent fluxes in a way that is still poorly understood.
The mechanisms affecting the transport of mass and momentum in a stratified fluid
are partly due to the wavy properties of the medium which make allowance for
the propagation, distortion and interactions of internal gravity waves. This has an
effect on the correlations 〈uw〉xy and 〈ρw〉xy and significantly modifies the concepts of
eddy viscosity and diffusivity. For instance, Galmiche, Thual & Bonneton (2000) have
shown with direct numerical simulation that the interaction of two internal waves can
produce strong horizontal mean currents, which, of course, cannot be reproduced by
classical eddy viscosity models.

A number of numerical simulations (Riley et al. 1981; Gerz et al. 1989) and results
from the rapid distortion theory (Hanazaki & Hunt 1996) show that in decaying,
stratified turbulent flows with homogeneous and isotropic initial conditions, the
buoyancy fluxes tend to oscillate and eventually become counter-gradient. When a
vertical mean shear is present, the direct numerical simulations of Gerz et al. (1989)
show that the buoyancy and momentum turbulent fluxes both oscillate and eventually
become counter-gradient. However, when the mean shear and stratification are both
uniform, the fluxes do not depend on height z† and it is clear from (2.16) and (2.17)
that the mean profiles ρ̄ and ū remain unaffected as the turbulence evolves (note that
in this case the average operator 〈.〉xy may be replaced by a statistical operator under
assumptions of ergodicity). Nevertheless, Phillips (1972) and Posmentier (1977) have
shown, with physical arguments, that for a sufficiently large stratification, an initial
perturbation in the mean density profile may grow under the effect of the counter-
gradient buoyancy fluxes, leading to the formation of horizontal layers. Similarly, one
may expect that shear layers can develop under the effect of the counter-gradient
momentum fluxes when the turbulent field is perturbed by a non-uniform mean shear
profile. One consequence of these phenomena is that the concepts of positive eddy
viscosity and diffusivity fail and may be replaced by negative coefficients. This is the
key point of the present study.

3. Numerical methodology
In this section the numerical method used to solve equations (2.9) is described, as

well as the generation of the turbulent part of the initial conditions prescribed in the
subsequent simulations.

The flow evolves with no external forcing in a cubic box of size L. The equations
of motion (2.9) are solved for variables w, ζ, ū and ρ̃ using a pseudo-spectral code
(see Thual 1992) with fully periodic boundary conditions and 643 grid points. Some

† This supposes that, as argued by Townsend (1976), the momentum and buoyancy fluxes only
depend on the local mean gradients.
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validation runs have been performed with 1283 grid points (the choice of the resolution
is discussed in § 3.2). All the variables are Fourier-transformed and the equations are
solved in the Fourier space, except when computing the nonlinear terms, which are
calculated in the physical space. A second-order, slaved-frog temporal scheme (see
Frisch, She & Thual 1986) is used.

3.1. First step

The first step is to compute a non-divergent, random velocity field following Gaussian
statistics with homogeneity and isotropy properties. Following Orszag & Patterson
(1972), we prescribe the energy spectrum:

E(k, 0)

Ekin(0)
=

32

3kI

√
2

π

(
k

kI

)4

exp(−2(k/kI )
2), (3.1)

where E (k, 0) is the initial energy associated with wavenumber k, Ekin(0) = Epol(0) +
Etor(0) is the energy of the initial, Gaussian velocity field and kI is the injection
wavenumber (taken equal to 4.76× 2π/L). We define an integral lengthscale l(t) by

l(t) =
3π

4

∫ ∞
0

(E(k, t)/k)dk∫ ∞
0

E(k, t)dk

(3.2)

and the root-mean-square velocity urms(t) by Ekin(t) = (3/2)u2
rms(t).

3.2. Second step, validation and strategy

From this Gaussian initial condition, a short precomputation is performed with no
stratification and no mean shear imposed in order to obtain a non-Gaussian velocity
field where nonlinear transfers are developed.

This simulation is stopped at t0 = 0.84l(0)/urms(0). Then, the value of the velocity-
derivative skewness

S = −〈(∂xu)3〉xyz/[〈(∂xu)2〉xyz]3/2 (3.3)

is of order 0.5 (see figure 2), which is typical of well-developed nonlinear transfers (see
for instance the experimental results of Mills et al. 1958). The isotropic, homogeneous
turbulent field obtained is denoted by uiht(x) and is used to initialize the subsequent
numerical experiments (t = t0).

Using, for convenience, the notation u′0 = urms(t0) and l0 = l(t0), this velocity field
has a Reynolds number Re = u′0l0/ν = 55 with l0 of order one twelfth of L (this
corresponds to Rλ = u′0λ/ν ' 41 where λ is the Taylor microscale). The velocity field
in a vertical cross-section at t = t0 is shown on figure 3.

Due to isotropy, the velocity field uiht(x) satisfies Epol(t0) ' Etor(t0), a small dis-
crepancy being due to the random choice of the Gaussian field at t = 0. For the
same reason, a non-zero mean flow is necessarily present at t = t0 but the amount of
energy associated with this mean flow is only a small part of the total kinetic energy
(Eū(t0) ' Ev̄(t0) ' 3× 10−3Ekin(t0)).

We have performed a preliminary simulation for validation, with no stratification
and no imposed mean flow in order to check that the numerical code correctly
reproduces the decay of homogeneous, isotropic turbulence. In this simulation, the
integral lengthscale of the turbulent field increases slowly (not shown) but does not
exceed L/7 to L/6 after a few turnover timescales, which ensures that the simulation
is not box-limited in the time period considered.
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turms(0) /l (0)

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

S
t = t0

End of precomputation

Figure 2. Evolution of the velocity-derivative skewness coefficient S(t) in the precomputation. The
time unit is the initial turnover timescale of turbulence l(0)/urms(0). At t = 0, the velocity field has
Gaussian statistics and thus S(0) ' 0. The precomputation is stopped when the nonlinear transfers
are sufficiently developed (t = t0 ' 0.84l(0)/urms(0)). Then, S(t0) ' 0.5 and the velocity field obtained
is used as the initial turbulent velocity field for the numerical experiments.

Figure 3. Cross-section of the velocity field uiht(x) (end of the precomputation
and beginning of the simulations).

The decay of the kinetic energy in the computation domain tends to the power
law (t − t0)−p with p ' 1.5 (see figure 4). This value is close to the theoretical value
1.43 derived by Lesieur & Schertzer (1978) for low-Reynolds-number turbulence (this
value was derived in the case of an energy spectrum varying as k4 at low wavenumbers
and with auto-similarity assumptions), but is slightly higher than the value measured
in laboratory experiments on grid turbulence (e.g. Corrsin 1951).

The numerical experiments do not involve as many scales as laboratory experiments
at high Reynolds number, due to low resolution. However, the decay of the turbulent
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1 10

0.1

1.0

(t– t0)
–1.5

(t– t0)/s0

 E(t)
E(t0)

Figure 4. Decay of the total kinetic energy E(t) in the preliminary simulation of turbulence with no
stratification and no imposed mean flow initially. The time unit is τ0 = l0/u

′
0, the turnover timescale

of turbulence at t = t0. After a few turnover timescales, E(t) decreases as (t− t0)−1.5.

kinetic energy and the development of nonlinear transfers are well reproduced in
the validation run, which allows for qualitative interpretation of the global energetic
properties of the simulated flows. These low-resolution simulations also provide a
good starting point for theoretical analysis and comparison with models (Galmiche
& Hunt 2002).

The results presented in this paper were not significantly changed when using
1283 grid points (with the same injection lengthscale, wavenumber range multiplied
by two and Reynolds number of order 110). In some cases, however, the flow was
found to be rather sensitive to the initial conditions. Thus, several realizations of each
experiment have been performed and, when necessary, ensemble averages have been
computed over the set of realizations. To do so, the resolution has to be chosen such
that the computation time for each run is not excessive. Thus, all the simulations
were performed using 643 grid points. The difference between the realizations is the
Gaussian sample used at the beginning of each precomputation, but the same energy
spectrum (3.1) is prescribed at t = 0 in all cases and the velocity field has the same
spectral and energetic properties at t = t0.

4. Effect of turbulence on a stratified shear flow profile
4.1. Definition of the simulations

We first simulate the evolution of the horizontal mean flow profile ū(z, t) under
the effect of the decaying turbulence when the initial velocity field is affected by a
specified mean profile ū(z, t0) (associated with the non-uniform vertical mean shear
profile dū(z, t0)/dz). The isotropic, homogeneous turbulent field uiht(x) generated as
described in § 3 is used as the turbulent part of the initial velocity field. The initial
stratification is here uniform (i.e. ρ̄p(z, t0) = 0) and only the case of zero initial density
perturbations is considered (i.e. Eρ′(t0) = 0). Some details on the effect of initial density
perturbations on decaying turbulence may be found in the numerical simulations of
Métais & Herring (1989) and in the linear analysis of stratified turbulent shear flows
by Hanazaki & Hunt (1996) and Galmiche & Hunt (2002).

The initial velocity field is affected by the horizontal mean flow in the fundamental
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Run
Eū(t0)

E(t0)

Ev̄(t0)

E(t0)

Epol(t0)

E(t0)

Etor(t0)

E(t0)

Eρ̄(t0)

E(t0)

Eρ′ (t0)

E(t0)
Re(t0) Fr(t0) Pr nr

ANS ' 1
3

' 0 ' 1
3

' 1
3

0 0 55 ∞ 1 6

AMS ' 1
3

' 0 ' 1
3

' 1
3

0 0 55 1.2 1 6

ASS ' 1
3

' 0 ' 1
3

' 1
3

0 0 55 0.12 1 6

BNS ' 0 ' 0 ' 1
3

' 1
3

' 1
3

0 55 ∞ 1 1

BMS ' 0 ' 0 ' 1
3

' 1
3

' 1
3

0 55 1.2 1 1

BSS ' 0 ' 0 ' 1
3

' 1
3

' 1
3

0 55 0.12 1 1

Table 2. Definition of Simulations ANS, AMS, ASS, BNS, BMS and BSS. Letter A refers to the
simulations of turbulence in the presence of an initial horizontal mean current; B refers to those in
the presence of an initial perturbation of the mean density profile. Letters NS, MS and SS stand for
non-stratified, moderately stratified and strongly stratified respectively. The number of realizations
is denoted by nr .

mode in the x-direction with amplitude U0:

u(x, t0) = uiht(x) +U0 cos(2πz/L)e1. (4.1)

The value of U0 was chosen by considering the case of an equipartition between the
initial poloidal, toroidal and mean flow energies:

Eū(t0) ' Epol(t0) ' Etor(t0) ' 1
3
E(t0), (4.2)

which requires U0/u
′
0 =
√

3. As already mentioned in § 3, the initial mean flow profile
(t = t0) is slightly affected by the small mean flow harmonics of uiht. The energy of
these harmonics is only ' 1% of the energy of the imposed fundamental mode.

A suitable measure of the intensity of the stratification is given by the initial
turbulent Froude number Fr = u′0/Nl0. Two values of Fr are used: moderately
stratified simulation (AMS), Fr = 1.2; strongly stratified simulation (ASS), Fr = 0.12.
The Froude number may be written as N−1/τ0, where τ0 = l0/u

′
0 is the initial

turnover timescale. Thus, Fr is the ratio of the buoyancy timescale to the initial
turnover timescale of turbulence. For comparison, a non-stratified simulation (BNS)
was performed (Fr = ∞), by ignoring the buoyancy terms in equations (2.9).

In all the simulations, the Prandtl number P = ν/κ is taken equal to unity. This
value is far from the value known for salted water (of order 800) used in laboratory
experiments. However, as pointed out by Métais & Herring (1989), this Prandtl
number equal to unity may be seen as an effective eddy Prandtl number for the
simulated large-scale structures.

Although the simulations are fully defined by the Froude, Reynolds and Prandtl
numbers and the mean flow amplitude, it is useful to define, in the stratified simula-
tions, a z-dependent, local Richardson number by Ri(z) = (N/∂zū(z))

2, knowing that
this definition fails where the mean flow velocity has an extremum. In Simulation
AMS, Ri(z) varies between 1 and infinity, whereas it varies between 100 and infinity in
Simulation ASS. This indicates that the mean shear perturbation has small amplitude
compared to the intensity of the stratification, particularly in Simulation ASS. In
both cases, Ri is everywhere higher than the critical value Ric = 0.25 provided by the
linear stability analysis.

The definition of the simulations is summarized in table 2.
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Figure 5. Evolution of energies Epol , Etor , Eū, Ev̄ and Eρ′ in Simulations (a) ANS, (b) AMS and (c)
ASS (in Simulation ANS, Eρ′ is not shown since the density fluctuations play no role in the flow
dynamics). In these simulations, Eū ' Epol ' Etor and Eρ′ = 0 initially. The time unit is τ0 = l0/u

′
0,

the turnover timescale of turbulence at t = t0.

4.2. Evolution of the turbulent and mean quantities

The energies Epol , Etor , Eū, Ev̄ and Eρ′ are plotted as a function of time on figure 5 for
each simulation. On these plots, the time unit is τ0 = l0/u

′
0 and all the energies are

normalized by the initial total energy E(t0).
In the non-stratified simulation (Simulation ANS), we observe a monotonic decay

of the mean flow energy Eū as a result of the energy cascade to smaller scales of
the flow. It is also observed that the toroidal energy decays more slowly than the
poloidal energy. Although the mean shear distribution is non-uniform here, this result
is consistent with the linear computations of Townsend (1976) which show that the
vertical turbulent fluctuations decay faster than the horizontal fluctuations when an
initially isotropic turbulent field is subject to a vertical mean shear.

In the stratified simulations (AMS and ASS), oscillating exchanges take place
between the poloidal energy Epol and the potential energy Eρ′ . The oscillations are
less intense and slower in the moderately stratified case than in the strongly stratified
case. Their amplitude is damped after a few Brunt–Väisälä periods. These oscillations
with a timescale of order πN−1 have already been observed in previous numerical
simulations of unsheared turbulence (e.g. Métais & Herring 1989) and successfully
described in the framework of the rapid distortion theory by Hanazaki & Hunt
(1996). At the end of the simulations, the poloidal and turbulent potential energies
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Figure 6. Mean flow profile ū in Simulations ANS, AMS and ASS. Here the velocity scale is U0,
the amplitude of the perturbation imposed at t = t0. (a) t = t0 (the initial mean flow profile not
only includes the fundamental imposed at t = t0 but also the other modes present in the turbulent
velocity field). (b) t = t0 + 4τ0.

are roughly equipartitioned, whereas the toroidal energy Etor decays monotonically
and more slowly. Then, the flow field may be seen as the superposition of the vortical
field and a wave field with ‘mean’ energy Epol +Eρ′ . After six turnover timescales, the
ratio (Epol +Eρ′)/Etor is 1.1 in the moderately stratified simulation AMS and 0.7 in the
strongly stratified simulation ASS. It is interesting to note that the toroidal energy is
dissipated faster in the moderately stratified case than in the strongly stratified case
(after six turnover timescales we have Etor ' 0.025E(t0) in Simulation AMS whereas
we have Etor ' 0.05E(t0) in Simulation ASS). It seems that in the strongly stratified
case, the turbulent motions are rapidly converted into coherent vortical motions which
are dissipated more slowly.

As the initial stratification is uniform in these simulations, the energy Eρ̄ starts from
zero and is found to remain much lower than the other energies in the computation
domain (not plotted). Similarly, the mean flow energy Ev̄ in direction e2 remains very
low throughout the simulations.

Several realizations of these numerical experiments were performed but quantities
Epol , Etor , Eρ′ , Eρ̄ and Ev̄ are plotted only once, since they were found to evolve
similarly in each realization.

We now focus our attention on the evolution of the mean flow energy Eū. Whereas
in the absence of a stratification (Simulation ANS) the mean flow is classically
damped by the turbulent stresses, it is much more persistent when a stratification is
applied (Simulations AMS and ASS).

After six turnover timescales, we have Eū/Eū(t0) ' 0.98 in the strongly stratified
simulation ASS, 0.85 in the moderately stratified simulation AMS, and 0.6 in the
non-stratified simulation ANS. The mean flow profiles at time (t − t0) = 4τ0 are
shown on figure 6.

Unlike the other energies, the evolution of the mean flow energy Eū is found to be
quite sensitive to the initial conditions although the global tendency is the same from
one realization to another.

On figure 7(a), we have plotted the results for two realizations in the non-stratified,
moderately stratified and strongly stratified cases. The mean flow ū(z, t) may be
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Figure 7. Evolution of (a) Eū, the energy of the mean flow profile and (b) E>1
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harmonics with wavenumbers > 2π/L in simulations ANS (dashed lines), AMS (long-dashed lines)
and ASS (solid lines). The time unit is τ0 = l0/u
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0, the turnover timescale of turbulence at t = t0.

For comparison, two realizations of each experiment have been plotted.
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Figure 8. Ensemble-averaged evolution of (a) Eū, the energy of the mean flow profile and (b) E>1
ū ,

the energy of the harmonics with wavenumbers > 2π/L in simulations ANS, AMS and ASS. The
time unit is τ0 = l0/u

′
0, the turnover timescale of turbulence at t = t0. Here, the ensemble averages

have been performed over six realizations for each experiment. For comparison, the analytical
solution for Eū(t) has been plotted when the effect of turbulence is ignored (purely viscous decay).

decomposed as

ū(z, t) = ū1(z, t) + ū>1(z, t), (4.3)

where ū1 is the fundamental (which corresponds to the scale of the modeU0 cos(2πz/L)
imposed at t = t0), and ū>1 is the sum of the harmonics with wavenumbers greater
than 2π/L. The mean flow energy is then

Eū(t) = E1
ū (t) + E>1

ū (t), (4.4)

where E1
ū = (1/2)〈(ū1)2〉z and E>1

ū = (1/2)〈(ū>1)2〉z . The energy E>1
ū is plotted on

figure 7(b) for two realization of runs ANS, AMS and ASS.
In order to have a more general description of the mean flow evolution, ensemble

averages have been performed over a set of six realizations. The number of realizations
was chosen such that the averaged results were not significantly modified when using
more realizations.

The results are shown on figure 8. We have also plotted the analytical solution
for Eū obtained when the effect of the turbulence is ignored (this corresponds to the
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purely viscous decay of the fundamental mean flow mode imposed at t = t0). Note
on figure 8(b) that the quantity E>1

ū is almost unaffected by a moderate stratification
since its evolution is similar in simulations AMS (moderately stratified) and ANS
(non-stratified). Some weak oscillations of E>1

ū are observed in the strongly stratified
simulation (ASS). However, E>1

ū remains much lower than E1
ū and Eū ' E1

ū at any
time in all three simulations. Thus, the energy plotted on figure 8(a) is in fact mainly
the energy of the fundamental mode.

When a moderate stratification is applied (Simulation AMS), the turbulent diffusion
of momentum remains efficient during one or two turnover timescales and Eū decays
as in the non-stratified, experiment (ANS). After two or three turnover timescales,
the effect of the restoring buoyancy forces causes the fluid particles to reduce their
vertical motion which affects the turbulent stresses and slows down the mean flow
decay. After four or five turnover timescales, the turbulence becomes almost inefficient
in affecting the mean flow and the rate of decay of Eū tends to the viscous rate.

In the strongly stratified simulation (ASS), the effect of the buoyancy forces on the
mean flow is more dramatic. In the very early stages of decay, the evolution of Eū
is close to the decay observed in the non-stratified simulation (ANS), but the mean
flow is affected by the stratification as soon as t − t0 ' 0.2τ0 (' 1.7N−1). At this
time, Eū increases and not only starts oscillating but also continues increasing during
two or three turnover timescales. Eū becomes greater than the viscous solution when
t− t0 ' 0.35τ0 (' 3N−1). After four turnover timescales, Eū decays at the viscous rate
but remains larger than the viscous solution. These results show that the buoyancy
forces cause the turbulent motions to transfer energy to the mean motion, which
induces a net acceleration of the horizontal current.

4.3. Eddy diffusion of momentum

Following the discussion of § 2.4 on turbulence–mean field interactions, the evolution
of the horizontal mean flow may be interpreted in terms of eddy diffusion of momen-
tum. As the fundamental mode ū1(z, t) of the mean flow profile largely dominates the
other harmonics ū>1(z, t) throughout the simulations, we focus our attention on the
equation for ū1(z, t):

∂tū
1 + ∂z[〈uw〉xy]1 = ν∂zzū

1, (4.5)

where [〈uw〉xy]1 is the fundamental mode of the vertical profile of the momentum flux
〈uw〉xy .

The profiles of the mean flow increment ū1(z, t) − ū1(z, t0) are plotted on figure 9
in one realization of Simulations ANS, AMS and ASS at different times. These plots
show that the fundamental has almost constant spatial phase in the non-stratified and
moderately stratified simulation. A vertical shift is observed in the strongly stratified
simulations, which may be due to the global oscillations of the velocity field. However,
this vertical shift remains small throughout the simulation. Thus, the mean flow mode
may be seen as the solution of the following diffusion equation:

∂tū
1 = (ν1

e (t) + ν)∂zzū
1, (4.6)

where ν1
e (t) is the time-dependent eddy viscosity for the fundamental mode defined

by

ν1
e (t)∂zzū

1 = −∂z[〈uw〉xy]1. (4.7)

This definition, however, is singular where ∂zzū
1 = 0. Thus, to avoid numerical

problems when computing ν1
e in the simulations, it is more convenient to use a

global definition, based on the evolution equation for the energy E1
ū of the mode ū1.
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Figure 9. Evolution of the fundamental mode ū1 of the mean flow profile in Simulations ANS,
AMS and ASS. Here the velocity scale is U0, the amplitude of the perturbation imposed at t = t0.
(a) Profile of ū1 at t = t0. (b, c, d) Profile of the fundamental profile increment ū1(z, t) − ū1(z, t0) at
t = t0 (solid line), t = t0 + τ0 (dot-dashed curve), t = t0 + 2τ0 (long-dashed curve), t = t0 + 3τ0

(dashed curve) and t = t0 + 4τ0 (dotted curve) in Simulations (b) ANS, (c) AMS and (d ) ASS.

Multiplying (4.5) by ū1 and integrating over the vertical, we obtain

∂tE
1
ū + 〈ū1∂z〈uw〉xy〉z = ν〈ū1∂zzū

1〉z, (4.8)

which may be written as

∂tE
1
ū = (ν1

e (t) + ν)〈ū1∂zzū
1〉z. (4.9)

With periodic boundary conditions, the eddy viscosity ν1
e (t) is then given by

ν1
e (t) = −〈ū

1∂z〈uw〉xy〉z
〈ū1∂zzū1〉z =

〈ū1∂z〈uw〉xy〉z
〈(∂zū1)2〉z , (4.10)

which is equivalent to (4.7) but is easier to compute numerically, since 〈(∂zū1)2〉z > 0.
The ensemble-averaged results are plotted on figure 10 for the non-stratified (ANS),

moderately stratified (AMS) and strongly stratified (ASS) simulations. We also show
the results obtained for each realization in order to highlight the sensitivity of ν1

e (t)
to the initial velocity field. As the initial turbulence is supposed to be homogeneous,
we expect the initial value of ν1

e to be zero. This is not exactly the case in each
realization, due to a slight inhomogeneity of the velocity field at t = t0. However, the
initial homogeneity is verified in the mean and the value of ν1

e (t0) averaged over six
realizations is close to zero.

On this plot it is clear how the eddy diffusion of momentum is affected by the
stratification. The oscillations of the eddy viscosity in the stratified simulations (AMS
and ASS) are qualitatively in agreement with the oscillations of the momentum flux
observed is the simulations performed by Gerz et al. (1989) when the mean shear and
stratification are uniform. Here, we can observe how the eddy viscosity, and thus the
mean flow profile, are affected by these oscillations when the mean shear, and thus the
turbulent fluxes, are not uniform. In the absence of a stratification (simulation ANS),
the eddy viscosity ν1

e increases during one or two turnover timescales and remains
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Figure 10. Evolution of the eddy viscosity coefficient ν1
e normalized by the molecular viscosity ν

computed in simulations ANS, AMS and ASS. The time unit is τ0 = l0/u
′
0, the turnover timescale of

turbulence at t = t0. The dotted lines are the results obtained in six realizations of each experiment
and the thick lines are the results averaged over the six realizations.

positive throughout the simulation but slowly decreases as turbulence decays. In the
moderately stratified simulation, ν1

e starts decreasing earlier (t− t0 ' 0.9τ0 ' N−1) and
becomes zero at t − t0 ' 3.3τ0 (' 3N−1). In the strongly stratified simulation (ASS),
ν1
e becomes negative at t − t0 ' 0.2τ0 (' 1.7N−1) and remains persistently negative

although some oscillations appear, which accounts for the growth of the mean flow
energy in Simulation ASS. These results are further discussed in § 6.

5. Effect of turbulence on a stable mean density profile
5.1. Definition of the simulations

We now simulate the evolution of the mean density profile ρ̄(z, t) as turbulence
decays, when a perturbation is introduced in the initial stratification (associated with
the initial mean density profile ρ̄(z, t0)). The isotropic, homogeneous turbulent field
uiht(x) generated as described in § 3 is used as the initial condition for the velocity
field with no imposed mean flow. Only the case of zero initial density perturbations
is considered (i.e. Eρ′(t0) = 0).

The linear density mean profile is initially perturbed by a fundamental mode with
amplitude ρ̄p0:

ρ̄p(z, t0) = ρ̄p0 cos(2πz/L). (5.1)

The choice of the value of ρ̄p0 was made by considering the case of an equipartition
between the initial poloidal, toroidal and potential energies:

Eρ̄ ' Epol(t0) ' Etor(t0) ' 1
3
E(t0), (5.2)

which requires ρ̄p0g/ρrNlu
′
0 =
√

3. The resulting density profile ρ̄l + ρ̄p is everywhere
stable and the local Brunt–Väisälä frequency N defined by (2.5) varies initially with
height z. The minimum and maximum values of N(z, t0) will be denoted by Nmin

and Nmax.
The Prandtl number P = ν/κ is taken equal to unity and we use again two values of
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Figure 11. Evolution of energies Epol , Etor , Eū + Ev̄ , Eρ′ and Eρ̄ in Simulations (a) BNS, (b) BMS
and (c) BSS. In these simulations, Eρ̄ ' Epol ' Etor and Eρ′ = 0 initially. The time unit is τ0 = l0/u

′
0,

the turnover timescale of turbulence at t = t0.

the Froude number: Fr = 1.2 (moderately stratified simulation BMS) and Fr = 0.12
(strongly stratified simulation BSS). A measure of the vertical variations of the Brunt–
Väisälä frequency is provided by the value of Nmax/N. We have Nmax/N = 1.4 in
Simulation BMS and Nmax/N = 1.05 in Simulation BSS.

A non-stratified simulation (BNS) was also performed (Fr = ∞). In this case,
variable ρ simply plays the role of a passive scalar being mixed by turbulence without
affecting the flow dynamics. Thus, the flow field is simply the continuation of the
precomputation run. In the initial condition, the periodic component of the mean
density profile is still given by (5.1) and the background linear profile is zero.

The definition of the simulations is summarized in table 2.

5.2. Evolution of the turbulent and mean quantities

The energies Epol , Etor , Eū + Ev̄ , Eρ′ and Eρ̄ are plotted as a function of time on
figure 11 for each simulation.

On these plots, the time unit is τ0 = l0/u
′
0 and all the energies are normalized

by the initial total energy at t = t0. Although several realizations of these numerical
experiments have been performed, we only show the results for one realization because
all the flow diagnostics were found to evolve similarly for each realization.

When ρ is a passive scalar (non-stratified simulation BNS), Eρ̄ decreases mono-



Turbulence–mean field interactions in a stratified fluid 231

tonically as time evolves.† In this case, the effect of the turbulent mixing is to damp
the initial perturbation in the density profile, while the turbulent density fluctuations
increase monotonically. In the stratified simulations (BMS and BSS), oscillations of
the poloidal energy Epol and potential energy Eρ′ are again observed on a timescale
of order πN−1. The toroidal energy Etor decreases slowly in these stratified simula-
tions whereas isotropy is conserved in the non-stratified case BNS (Epol(t) ' Etor(t))
since the density field has no effect on the flow field. After six turnover timescales,
Etor/Epol ' 3.3 in the strongly stratified simulation (BSS) and Etor/Epol ' 1.5 in
the moderately stratified simulation (BMS). This result confirms the tendency to
anisotropy of stratified turbulence and the presence of vortical structures with a
weak vertical velocity component, whereas the poloidal energy Epol and the potential
energy Eρ′ are low and equipartitioned for large times. After six turnover timescales,
the ratio (Epol + Eρ′)/Etor is 1.3 in the moderately stratified simulation BMS and 0.7
in the strongly stratified simulation BSS. As was already observed in the simulations
of stratified shear flows AMS and ASS, the toroidal energy is dissipated faster in
the moderately stratified case than in the strongly stratified case (after six turnover
timescales Etor ' 0.02E(t0) in Simulation BMS whereas Etor ' 0.06E(t0) in Simulation
BSS).

Let us now focus on the evolution of the mean quantities. The mean flow energy
Eū+Ev̄ remains negligible compared to the other energies in all cases, but a significant
increase and weak amplitude oscillations of the potential energy Eρ̄ are observed in
the stratified simulations (BMS and BSS) as soon as the fluid particles are subject to
the restoring buoyancy forces (t−t0 ' 1.25N−1 in Simulation BMS and t−t0 ' N−1 in
Simulation BSS). The initial perturbation of the mean density profile is thus alternately
damped and amplified, so that Eρ̄ is the major remaining component of the energy at
the end of the stratified simulations. After six turnover timescales, Eρ̄/Eρ̄(t0) ' 0.95
in Simulation BSS and Eρ̄/Eρ̄(t0) ' 0.85 in Simulation BMS, whereas Eρ̄/Eρ̄(t0) ' 0.4
in the non-stratified simulation.

The profiles of ρ̄ are plotted on figure 12 for (t − t0) = 4τ0 and a zoom of
figures 11(a), 11(b) and 11(c) is provided on figure 13(a).

We have also plotted the solution for Eρ̄ when the effect of the turbulence is ignored
(this corresponds to the purely diffusive decay of the mean density profile). As for
the mean flow profile (see § 4.2), the periodic mean density profile ρ̄p(z, t) may be
decomposed as

ρ̄p(z, t) = ρ̄1
p(z, t) + ρ̄>1

p (z, t), (5.3)

where ρ̄1
p is the fundamental mode (imposed at t = t0), and ρ̄>1

p is the sum of the
harmonics with wavenumbers greater than 2π/L. The potential energy Eρ̄ of the mean
density profile is

Eρ̄(t) = E1
ρ̄ + E>1

ρ̄ , (5.4)

where E1
ρ̄ = (1/2)(g/ρrN)2〈(ρ̄1

p)
2〉z and E>1

ρ̄ = (1/2)(g/ρrN)2〈(ρ̄>1
p )2〉z . The energy E>1

ρ̄

(figure 13b) grows until (t − t0) ' 3.5τ0 in the non-stratified case and then slowly
decreases whereas in the stratified simulations its evolution is subject to the oscillations
induced by the stable stratification. In the moderately stratified simulation (BMS),
its maximum value is of the same order as in the non-stratified simulation (of order
10−3E(t0)), whereas in the strongly stratified simulation (BSS) it is much lower (of

† Note that in the non-stratified case the term ‘potential energy’ is not appropriate and may be
replaced by ‘variance’. In this case, the only energy scale is the initial kinetic energy of the flow

field. Eρ′ is then defined as Eρ′ (t) = Ekin(0)〈ρ′2〉xyz/ρ2
r and Eρ̄ is defined as Eρ̄(t) = Ekin(0)〈ρ̄2

p〉z/ρ2
r .
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Figure 12. Periodic component ρ̄p of the mean density profile in Simulations BNS, BMS and BSS.
Here the density scale is ρ̄p0, the amplitude of the perturbation imposed at t = t0. (a) t = t0.
(b) t = t0 + 4τ0.
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Figure 13. Evolution of (a) Eρ̄, the energy of the mean density profile and (b) E>1
ρ̄ , the energy of

the harmonics with wavenumbers > 2π/L in simulations BNS, BMS and BSS. The time unit is
τ0 = l0/u

′
0, the turnover timescale of turbulence at t = t0. For comparison, the analytical solution

for Eρ̄(t) has been plotted when the effect of turbulence is ignored (purely diffusive decay).

order 10−4E(t0)). Thus, E>1
ρ̄ remains much lower than the energy of the fundamental

in all simulations, and Eρ̄ ' E1
ρ̄ at any time.

Figure 13(a) clearly shows the oscillations of the mean density profile energy
Eρ̄ in the stratified simulations. The oscillations are faster in the strongly stratified
simulation (BSS) but their amplitude is larger in the moderately stratified simulation
(BMS). In the strongly stratified case, Eρ̄ becomes greater than the purely diffusive
solution after a period of ' 0.25τ0 (' 2N−1) and then oscillates with a mean rate
of decay equal to the diffusive rate. Thus, the turbulent vertical fluctuations are
rapidly damped by the strong stratification, which reduces dramatically the turbulent
vertical mass transport. In the moderately stratified simulation (BMS), the vertical
turbulent motions are damped more slowly so that the turbulent mass transport
remains efficient until (t− t0) ' 1.5τ0 (' 1.25N−1). As a consequence, the final value
of Eρ̄ remains lower than the diffusive solution in spite of the oscillation occurring at
(t− t0) ' 1.25N−1.
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Figure 14. Evolution of the fundamental mode ρ̄1
p of the mean density profile perturbation in

Simulations BNS, BMS and BSS. Here the density scale is ρ̄p0, the amplitude of the perturbation
imposed at t = t0. (a) Profile of ρ̄1

p at t = t0. (b, c, d) Profile of the fundamental perturbation
increment ρ̄1

p(z, t) − ρ̄1
p(z, t0) at t = t0 (solid line), t = t0 + τ0 (dot-dashed curve), t = t0 + 2τ0

(long-dashed curve), t = t0 + 3τ0 (dashed curve) and t = t0 + 4τ0 (dotted curve) in Simulations (b)
BNS, (c) BMS and (d ) BSS.

5.3. Eddy diffusion of buoyancy

The evolution of the mean density perturbation can be traced from the profiles of
ρ̄1
p(z, t)− ρ̄1

p(z, t0) plotted on figure 14 at times (t− t0) = τ0, 2τ0, 3τ0 and 4τ0.

These plots allow us to observe that in all cases the fundamental mode ρ̄1
p has almost

constant spatial phase, although a very weak vertical shift is observed in the stratified
simulations. This small shift is presumably due to the large-scale wavy oscillations
induced by the buoyancy forces. However, the final density profile is roughly in phase
with the initial profile. Thus, as for the mean flow in Simulations A (see § 4.3), the
equation for ρ̄1

p

∂tρ̄
1
p + ∂z[〈ρ′w〉xy]1 = κ∂zzρ̄

1
p (5.5)

(where [〈ρ′w〉xy]1 is the fundamental mode of the vertical profile of the buoyancy flux)
may be replaced by the following diffusion equation:

∂tρ̄
1
p = (κ1

e(t) + κ)∂zzρ̄
1
p. (5.6)

Here, κ1
e(t) is the time-dependent eddy diffusivity for the fundamental mode, which

with periodic boundary conditions can be defined as

κ1
e(t) = −〈ρ̄

1
p∂z〈ρw〉xy〉z
〈ρ̄1

p∂zzρ̄
1
p〉z =

〈ρ̄1
p∂z〈ρw〉xy〉z
〈(∂zzρ̄1

p)
2〉z . (5.7)

The eddy diffusivity has been computed in simulations BNS, BMS and BSS (figure 15).
The oscillations of κ1

e are again qualitatively consistent with the oscillations of
the buoyancy fluxes observed in the simulations of Gerz et al. (1989) in unsheared
stratified turbulence when the stratification is uniform. Here, the evolution of the
eddy diffusivity shows how the mean density profile is affected when a perturbation
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Figure 15. Evolution of the eddy diffusivity coefficient κ1
e normalized by the molecular diffusivity

κ computed in simulations BNS, BMS and BSS. The time unit is τ0 = l0/u
′
0, the turnover timescale

of turbulence at t = t0.

is introduced in the initial condition. In all three simulations, BNS, BMS and BSS,
the initial value of κ1

e is zero since there are no density fluctuations at t = t0. In the
non-stratified simulation, the eddy diffusivity grows as turbulence evolves and reaches
a maximum value after one turnover timescale. Then it starts decreasing slowly as the
turbulent motions decay and lose their mixing efficiency. The maximum is reached
earlier (t − t0 ' 0.5N−1) in both stratified simulations and κ1

e becomes negative at
t − t0 ' 1.25N−1 in Simulation BMS and t − t0 ' N−1 in Simulation BSS. This
causes the mean density perturbation to grow and explains the first oscillation of
Eρ̄ observed on figure 13(a). For long times, the behaviour of the eddy diffusivity is
merely oscillatory in both the strongly stratified and moderately stratified simulations.

6. Discussion
6.1. Short-time evolution of the mean profiles

In this section, we discuss the evolution of the mean flow profile in Simulations AMS
and ASS, and of the mean density profile in Simulations BMS and BSS in the first
stages of the decay (over a time of order N−1).

The evolution of the mean flow in Simulations ASS and AMS shows that the pres-
ence of a strong stratification greatly modifies the turbulence–mean flow interaction
compared to the moderately stratified case. It seems that a competition takes place
between the classical eddy diffusion of momentum and the counter-gradient mo-
mentum fluxes induced by the restoring buoyancy forces. The latter dominates when
the stratification is strong enough and causes the mean flow perturbation to grow
after a short period of time (Simulation ASS, figure 8a), whereas in the moderately
stratified simulation, the effect of the stratification is simply to reduce the vertical
transport and to slow down the decay of the mean flow energy (Simulation AMS,
figure 8a).

The evolution of a mean current in the presence of a turbulent field and strong
stratification has also been investigated experimentally by Spedding (1997) and Bon-
nier (1999) for instance. In these experiments, a sphere is towed horizontally (say,
along the x-axis) in strongly stratified water (see also Lin & Pao 1979). The intensity
of the defect velocity in the turbulent wake is measured downwind and its spatial
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evolution behind the sphere can be described in terms of temporal evolution in the
initial value problem of decaying turbulence. The main difference between our nu-
merical simulations and these experiments is the horizontal invariance of the mean
flow along the y-coordinate, whereas the wake of a sphere has some strong varia-
tions along that direction. Nevertheless, the evolution of the defect velocity in these
laboratory experiments has some aspects similar to our numerical simulations. From
his measurements, Spedding (1997) found a change in the rate of decay of the defect
velocity after a time period of order 1.7N−1. Then, he observed that the turbulent
wake loses its three-dimensional features and that the defect velocity starts decreasing
more slowly than in the near wake. However, it is not clear from these experiments
whether this change in the mean flow decay is associated with an input of energy
to the mean current or is simply due to the damping of the turbulent fluxes under
the effect of the stratification. In the experiments of Bonnier (1999), an acceleration
of the mean current is indeed detected (after a time lapse of order 2.3N−1), which
indicates that a net energy transfer occurs from the turbulent motion to the mean
motion by the way of the restoring buoyancy forces.

From these laboratory experiments and our numerical simulations, it is clear that
the mean flow decay strongly depends on the intensity of the stratification. The change
in the turbulence–mean flow interaction (compared to the non-stratified case) may be
associated with the beginning of the so-called ‘collapse’ of the velocity field, although
many definitions of the collapse are used in the literature, depending on specific flow
configurations. Here, we may define the ‘collapse’ as the moment at which the eddy
viscosity (as defined in § 4.3) becomes zero. This happens at 1.7N−1 in Simulation
ASS and 3N−1 in Simulation AMS (see figure 10). This characteristic timescale is in
good agreement with many observations in grid turbulence (e.g. Lienhard & Van Atta
1990) or turbulent wakes (Hopfinger, Flór & Bonneton 1991; Chomaz, Bonneton &
Hopfinger 1993; Spedding 1997; Bonnier 1999), in which the ‘collapse’ occurs after a
period of order 2N−1.

It is important to emphasize that the mean flow does not comprise part of the
vortical component in the flow decomposition, and that its growth in Simulation ASS
occurs after a short period of time. These two remarks show that the acceleration of
the mean current cannot be attributed to the classical inverse cascade to the large-
scale vortical structures which takes place over a much longer period of time. This
tendency may be explained by the linear processes, which dominate the nonlinear
processes in the first stage of decay of turbulence using a slightly non-homogeneous
version of the rapid distortion theory (Galmiche & Hunt 2002): under conditions of
strong stratification, the linear equations of motion can be solved for short times when
initially homogeneous and isotropic turbulence interacts with a horizontal mean flow
profile. The linear computation of the momentum fluxes then shows that the mean
flow is indeed subject to a time-dependent eddy viscosity which becomes negative
after a time period of

√
3N−1 ' 1.73N−1. This is in fairly good agreement with our

strongly stratified simulation ASS.
We see in Simulations BMS and AMS that in the case of a moderate stratification,

the short-time evolution of a perturbation in the mean density profile (Simulation
BMS, figure 13a) is more affected by the buoyancy forces than the evolution of a
perturbation in the mean flow profile (Simulation AMS, figure 8a): whereas the decay
of the mean flow energy Eū is monotonic in Simulation AMS, an increase of the mean
potential energy Eρ̄ is observed in Simulation BMS at time 1.25N−1, which shows
that a significant amount of potential energy is transferred from the turbulent field
ρ′ to the mean field ρ̄. In the strongly stratified simulation BSS, this energy exchange
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happens faster (at N−1) but has a much lower amplitude due to the strong reduction
of the vertical motions of the fluid particles.

In the unsheared simulations BMS and BSS, the ‘collapse’ may be defined for the
density field as the time at which the eddy diffusivity (as defined in § 5.3) becomes
zero. This happens at about 1.25N−1 in Simulation BMS and N−1 in Simulation
BSS (see figure 15). Thus, the ‘collapse’ of the density field in Simulations BMS and
BSS occurs earlier than the collapse of the velocity field observed in Simulations
AMS and ASS. Within the framework of the rapid distortion theory, the short-time
computation of the buoyancy fluxes in decaying turbulence with homogeneous and
isotropic initial conditions, subjected to a strong, non-uniform stratification, shows
that the mean density profile is subjected to a time-dependent eddy diffusivity which
becomes negative at

√
15/16N−1 ' N−1 (Galmiche & Hunt 2002). This is close to

the collapse time found in the strongly stratified simulation BSS.

6.2. Long-time evolution of the mean density profile

Here we discuss the evolution of the mean density profile in Simulations BMS and
BSS over a few turnover time scales.

In figure 15 we note that the collapse of the eddy diffusivity as defined in the pre-
vious section is followed by some persistent oscillations in both the moderately (BMS)
and strongly stratified (BSS) simulations, which can be traced back to oscillating
exchanges of potential energy between the turbulent field and the mean field.

The time-averaged value of κ1
e/κ over a few turnover timescales is slightly positive

in the moderately stratified simulation BMS (of order 2) and roughly zero in the
strongly stratified simulation (BSS). Thus, compared to the non-stratified simulation
BNS, the time-averaged effect of the buoyancy forces in the stratified simulations is
to inhibit the turbulent diffusion of mass.

We may compare this result with some laboratory experiments of decaying turbu-
lence (e.g. Park et al. 1994; Pearson & Linden 1983). In these experiments, density
layers appear in the final stage of decay of turbulence in a fluid that is initially
uniformly stratified, which means that small perturbations in the mean density profile
grow as turbulence evolves and finally form persistent horizontal layers due to the
local turbulent mixing. In our Simulations BMS and BSS, the collapse of the density
field (as defined in § 6.1) can be traced back to this tendency for short times, and the
long-time behaviour of the potential energy Eρ̄ (figure 13a) shows that the decay of
the mean profile ρ̄(z, t) is indeed much slower than in the non-stratified simulation.
However, we do not observe any persistent growth of the perturbation in the mean
density profile. The reason is probably that in our simulations at low Reynolds num-
ber, the flow decays rapidly and the turbulent fluxes are damped before persistent
layers have time to develop. This is a significant difference with the experiments of
Park et al. (1994), in which the turbulence is generated by moving a vertical rod
back and forth in a water tank stratified in salinity, and density layers form after
numerous stirring events, when the turbulence is well-developed. The long-time action
of the nonlinear processes certainly plays a major role in the formation of permanent
density layers in forced turbulence. Moreover, in these laboratory experiments, the
density layers first form close to the top and bottom boundaries of the tank and
expand slowly into the interior. Thus, the experimental boundary conditions may also
play a significant role in the formation of layers, which cannot be reproduced in our
numerical simulations with periodic boundary conditions. It is also possible that, as
suggested by Pearson & Linden (1983), the density layers observed in the final stage
of decay of turbulence result from an equilibrium between the viscous dissipation and
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the buoyancy forces, and only develop at high Prandtl number, e.g. P ' 800 in salted
water (whereas P = 1 in our simulations).

6.3. Long-time evolution of the mean flow profile

Here we discuss the evolution of the mean flow profile in Simulations AMS and ASS
over a few turnover timescales.

Unlike the eddy diffusivity in Simulations BMS and BSS, there is a qualitative
difference between the large-time behaviour of the eddy viscosity in the strongly
stratified (ASS) and moderately stratified (AMS) simulations. When the stratification
is moderate, the eddy viscosity remains zero for large times with almost no oscillations.
On the contrary, when the stratification is strong, the collapse of the velocity field is
followed by a persistent, oscillatory acceleration of the mean current. In Simulation
AMS, the averaged value of ν1

e /ν over a few turnover timescales is small but positive
(of order 3), whereas it is negative (of order −1.5) in Simulation ASS.

There is no clear experimental evidence of a persistent acceleration of the mean
current over a long period of time in turbulent wakes of bodies or other stratified
turbulent shear flows. On the other hand, the presence of shear layers has been
observed in the final stage of decay of turbulence in several laboratory experiments
with no imposed mean shear initially (e.g. Pearson & Linden 1983), which suggests that
initial perturbations in the mean flow profile are indeed amplified by the counter-
gradient turbulent fluxes. It may be interesting to undertake further experimental
investigations to describe accurately the behaviour of the horizontal mean current in
a turbulent shear flow as a function of the intensity of the stratification.

From a general point of view, it is important to identify the interactions that may
be responsible for the persistent growth of the mean flow. We note in figure 5 that
the growth of the mean flow in the strongly stratified simulation is accompanied
by persistent oscillations of the poloidal and potential energies. In the low-Froude-
number limit, the poloidal component of the flow field (with zero vertical vorticity)
may be associated with the waves, and the toroidal component (with zero vertical
velocity) may be associated with the vortical modes (see Riley et al. 1981). From this
point of view, we can associate the oscillations observed in Simulation ASS with the
presence of a slowly dissipated wave field, which may play a significant role in the
time evolution of the mean current. Let us write the evolution equation for the mean
flow ū(z, t) again:

∂tū = −∂z〈uw〉xy + ν∂zzū. (6.1)

Provided that the vertical component w of the velocity field is only associated with
the wave field, it is clear from this equation that only the interactions involving at
least one wave mode are able to affect the time evolution of the mean flow, namely:
(i) the wave–mean flow interactions, (ii) the wave–wave interactions and (iii) the
wave–vortical interactions.

The wave–mean flow interaction (i) has already been extensively studied in numer-
ous theoretical studies (e.g. Garrett 1968; Phillips 1968; Andrews & McIntyre 1978;
Müller 1976; Grimshaw 1984). Müller (1976) has studied the diffusion of momentum
and mass by a weakly nonlinear wave field under WKB assumptions. He treated the
cross-coupling of wave distortion and mean field evolution as a small perturbation
problem and concluded that the wave field does not induce any vertical transport
of buoyancy but does induce a vertical transport of momentum. He found that the
wave-induced viscosity had a positive, and even high, value compared to the effec-
tive viscosity associated with eddies. However, in his analysis, the mean current had
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weak amplitude and the wave field was only smoothly distorted by the mean shear.
There are some situations where the waves are strongly distorted by the mean shear.
Then, the waves can either be trapped by the mean flow or reach a critical level and
eventually accelerate the mean current. For instance, Winters & D’Asaro (1994) have
observed in direct numerical simulations that a significant amount of energy was
transferred from the wave field to the mean flow near a critical level. Some further
investigations are needed to study the interaction of the turbulence-induced waves
and the mean current in strongly stratified turbulent shear flows.

Concerning interactions (ii) and (iii), resonant triads of wave modes and vortical
modes have been studied by Lelong & Riley (1991) under conditions of strong
stratification, but in the absence of a vertical mean shear. Few studies have paid
attention to the triads involving an energy transfer to a horizontal mean flow mode,
i.e. a mode with vertical wave-vector. It has been pointed out by Galmiche et al.
(2000) that the interaction of two wave modes with wave-vectors kA and kB (and
wavenumbers kA and kB) can give rise to a horizontal mean flow provided that kA+kB
(or kA − kB) is vertical and kA 6=kB . This is another possible mechanism involved in
the stratified turbulence–mean flow interaction. To our knowledge, there is no result
in the literature on triads involving a vortical mode, a wave mode and a horizontal
mean flow mode.

7. Summary and concluding remarks
The aim of this paper was to study some aspects of turbulence–mean field inter-

actions in stratified fluids. We have performed direct numerical simulations of freely
decaying turbulence in the presence of a stable stratification when either an initial
non-uniform vertical mean shear profile or an initial non-uniform density profile is
imposed initially. The results of these numerical simulations may be summarized as
follows.

(i) When a moderate stratification is applied to a mean flow profile ū(z) in the
presence of an initial turbulent velocity field (Simulation AMS, Fr = 1.2), the effect of
the buoyancy forces on the fluid particles reduces the vertical transport of momentum
and causes the mean flow energy to decay much slower than in the non-stratified case.
This phenomenon has been described by defining an eddy viscosity which becomes
zero after about 3N−1 and remains roughly zero for large times. This may be seen as
the ‘collapse’ of the velocity field.

(ii) When a strong stratification is applied (Simulation ASS, Fr = 0.12), the eddy
viscosity become zero after about 1.7N−1 and remains persistently negative for large
times, which shows that the collapse not only reduces the vertical transport of
momentum but also induces an energy transfer from the turbulent field to the mean
flow.

(iii) The evolution of an initial perturbation in the mean density profile ρ̄(z) in the
presence of a turbulent field is affected by the buoyancy forces and the eddy diffusivity
becomes zero at about 1.25N−1 when a moderate stratification is applied (Simulation
BMS, Fr = 1.2). Then, the energy of the perturbation increases significantly, which
shows that some potential energy is transferred from the turbulent field to the mean
field and may be seen as the collapse of the density field. The time-averaged value of
the eddy diffusivity over a few turnover timescales is positive but small.

(iv) When the background stratification is strong (Simulation BSS, Fr = 0.12), the
energy of the perturbation in the mean density profile oscillates around the purely
diffusive solution and is thus almost unaffected by the turbulence at large times. The
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eddy diffusivity becomes zero at about N−1. This may be seen as the collapse of
the density field but the eddy diffusivity oscillates during several turnover timesscales
with a time-averaged value of order zero.

In the strongly stratified simulations, the growth of the mean profiles for short times
can be traced back to the tendency of stratified turbulence to form horizontal layers
and can be explained by the linear processes which are dominant in the first stage
of decay of turbulence (Galmiche & Hunt 2002). This suggests that the formation
of layers in stratified flows may be described in terms of turbulence–mean field
interactions, an approach that complements other studies describing layer formation
in terms of anisotropy (e.g. Godeferd & Cambon 1994) or in terms of vortex pair,
zig-zag instability (Billant & Chomaz 2000).

The Simulations BMS and BSS highlight the effect of the stratification on the eddy
diffusivity. However, they do not allow us to reproduce the formation of persistent
density layers as observed in laboratory experiments (e.g. Park et al. 1994; Pearson &
Linden 1983). Some further investigations are needed to explain the persistent growth
of a perturbation in the mean density profile, as described by Phillips (1972) and
Posmentier (1977) with heuristic arguments. In particular, the effect of high Reynolds
number, high Prandtl number and rigid boundary conditions may play a significant
role in the laboratory experiments such as those of Park et al. (1994).

On the other hand, the negative value of the eddy viscosity over several turnover
timescales in Simulation ASS does indicate that persistent shear layers develop when
the stratification is strong. The effect of the stratification on the mean flow is more
dramatic than suggested by Phillips (1972), who expected that the eddy viscosity
would be strongly reduced by the buoyancy forces but keep positive values even in
strongly stratified turbulence. In our Simulation ASS, the growth of the mean flow
is not a consequence of the slow inverse cascade to the large-scale vortical motions,
but is the result of a rapid energy transfer (on a timescale of order N−1) from the
turbulent field to the mean flow component, which cannot be included either in the
wave or in the vortex component of the flow decomposition.

It is important to emphasize that the evolution of the eddy viscosity ν1
e (t) and

diffusivity κ1
e(t) as defined in our simulations is only a diagnostic which can be traced

back to the behaviour of the fundamental modes of the perturbations in the mean
profiles (imposed in the initial condition) with periodic boundary conditions. The
results from the rapid distortion theory (Galmiche & Hunt 2001) show that the
concepts of (time-dependent) eddy viscosity and diffusivity are indeed relevant for
short times, as long as the effects of nonlinear processes are weak. In our simulations,
the description of the mean quantities in terms of eddy viscosity and diffusivity is
also relevant for large times since the small-scale harmonics in the mean profiles
are only slightly influenced by the turbulent field and only the fluctuations of the
fundamental modes are significant. However, the evolution of the mean profiles may
not be modelled by a diffusion equation in the more complex flows encountered in
realistic situations, in particular when complex boundary conditions have to be taken
into account. Wave–mean flow interactions may play a more significant role in high-
Reynolds-number and/or forced turbulence than in our simulations, and generate
small scales in the mean profiles when critical levels are reached. Furthermore, large-
scale modes with quasi-vertical wave-vector that correspond to quasi-horizontal fluid
motions (not included in the mean flow mode) and may play an important role in
real stratified turbulence, are particulalry difficult to represent in spectral codes even
with higher resolution.
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From this point of view, laboratory experiments are necessary to study small-
scale processes. Although simulations with higher resolution are useful as validation
runs, it is still impossible to simulate high-Reynolds-number real flows with no
parameterization. However, the present study shows that simulations with moderate
resolution highlight some fundamental features of stratified turbulence and are a
good starting point for theoretical analysis: based on the results of the present study,
an analytical, linear model has been proposed by Galmiche & Hunt (2002) for short
times, that is in good agreement with the simulations but does not include any
low-Reynolds-number assumption. Therefore, our results seem to reflect some quite
general properties of stratified turbulent flows. The reader is referred to Galmiche &
Hunt (2002) on this point. At large time, the turbulence–mean field interaction may
be different, but probably stronger in high-Reynolds-number real flows, as the kinetic
energy is dissipated more slowly.

There are a few other points which may require further investigations. First, the
effect of non-zero density fluctuations (i.e. non-zero Eρ′(t0)), correlated or not to the
initial velocity field, has not been considered here. According to the RDT model of
Hanazaki & Hunt (1996), the linear processes involved in the turbulence–mean flow
interaction should not be affected by initial density fluctuations in the first stage of
decay of turbulence. On the other hand, the temporal oscillations in the buoyancy
flux should change phase, which may affect the short-time behaviour of density layers.
However, many laboratory experiments show that for large time, layers form in the
final stage of decay of turbulence independently of the details of the initial condition
(e.g. Pearson & Linden 1983). Another question is how the turbulence–mean field is
affected by the lengthscale of the perturbations in the mean fields compared to the
lengthscale of turbulence. The short-time solution provided by RDT (Galmiche &
Hunt 2002) shows that the interaction is strongest and layers form when the mean
fields vary on a lengthscale of order u′0/N. This is also consistent with the experiments
of Park et al. (1994) and with atmospheric observations (Hunt, Kaimal & Gaynor
1985).

To further study the turbulence–mean field interactions in stratified media, it would
be interesting to simulate the evolution of the mean flow and mean density profiles
when the turbulence is forced by a random input of energy. When, as in previous
studies (e.g. Herring & Métais 1989), the forced simulations are initialized with a
turbulent field with no mean shear and uniform stratification, the mean flow profile
ū and the mean density profile ρ̄ remain unaffected. When the mean profiles are
initially perturbed, the constant input of energy to the turbulent field might induce
constantly counter-gradient, non-uniform turbulent fluxes affecting the mean profiles
and leading the flow to a steady state where the eddy diffusion of mass an momentum
is balanced by the dissipative processes.

In conclusion, these numerical simulations highlight some fundamental properties
of stratified turbulence and its interaction with the mean flow and density fields.
From a practical point of view, the understanding of these properties is necessary to
improve the parametrization of small scales in models of large-scale flows in oceans
or atmospheres where the effect of the stratification is preponderant. Although a
number of results are available from the stability theory that highlight the tendency
of stratified flows to develop counter-gradient fluxes, numerical simulations and
laboratory experiments are necessary because real flows generally do not satisfy
small-perturbation assumptions. Some new questions may arise when the effects
of an external forcing, rotation or complex boundary conditions are taken into
account.
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